Let $\;\displaystyle\text{Fr}_n = \sum\limits_{k=0}^n \binom{n}{k}^3\;$ be the $n^{th}$
Franel number (OEIS
A000172 ).
Combinatorially, it is the sum of those coefficients in following polynomial expansion
where the power of $x, y, z$ are all the same.
$$(1+x)^n (1+y)^n (1+z)^n
= \sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n \binom{n}{i}\binom{n}{j}\binom{n}{k} x^i y^j z^k
$$
More precisely, $$\text{Fr}_n = \sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n
\binom{n}{i}\binom{n}{j}\binom{n}{k} \delta_{ij}\delta_{jk}$$
where $\delta_{ij}$ is the Kronecker delta.
Using following integral representation of Kronecker delta,
$$\delta_{pq} = \int_{-\pi}^{\pi} e^{i(p-q)\theta} \frac{d\theta}{2\pi}$$
We can derive an integral representation of $\text{Fr}_n$:
$$ \text{Fr}_n = 8^n \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(\theta,\phi)^n \frac{d\theta d\phi}{4\pi^2}
\quad\text{ where }\quad f(\theta,\phi) = \left(\frac{\cos\theta+\cos\phi}{2}\right)\cos\theta
$$
Over its domain $[-\pi,\pi]^2$, $f(\theta,\phi)$ varies between $-\frac18$ and $1$.
If we let $\rho(t)$ be the "density" where $f(\theta,\phi)$ taking the value $t$. We can
simplify above expression as
$$\text{Fr}_n = 8^n \int_{-\frac18}^1 t^n \rho(t) dt$$
For large $n$, the weight of the $t^n$ factor in above integral will be concentrated at $t \sim 1$. We just need to figure out the behavior of $\rho(t)$ there. The contribution from other parts of the interval will be exponentially suppressed.
Introduce variables $x = \cos\theta$ and $y = \cos\phi$. For $t \sim 1$, we have
$$\begin{align}\rho(t)
= &\frac{1}{4\pi^2}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi} \delta(f(\theta,\phi)-t) d\theta d\phi\\
= & \frac{1}{\pi^2}\int_{-1}^1\int_{-1}^1
\frac{\delta\left(\left(\frac{x+y}{2}\right)x-t\right) dx dy}{\sqrt{(1-x^2)(1-y^2)}}\\
= & \frac{2}{\pi^2}\int_{\frac{\sqrt{1+8t}-1}{2}}^1
\frac{\frac{2}{x} dx}{\sqrt{(1-x^2)\left(1-\left(\frac{2t}{x}-x\right)^2\right)}}
\end{align}$$
Let $u = \frac{\sqrt{1+8t}-1}{2}$. Introduce variable $z, w$ such that $z = x^2 = u^2 + (1-u^2)w$, we can simplify above as
$$\begin{align}
\rho(t)
= &\frac{4}{\pi^2}\int_{u}^1 \frac{dx}{\sqrt{(1-x^2)(x^2-u^2)((1+u)^2-x^2)}}\\
= &\frac{2}{\pi^2}\int_{u^2}^1 \frac{dz}{\sqrt{z(1-z)(z-u^2)((1+u)^2 - z)}}\\
= &\frac{2}{\pi^2}\int_{0}^{1} \frac{dw}{\sqrt{w(1-w)(u^2+(1-u^2)w)(1+2u-(1-u^2)w)}}
\end{align}$$
Let $t = 1-\epsilon$ and Taylor expand the integrand in terms of $\epsilon$. We get
$$\begin{align}
\rho(1-\epsilon)
\approx &
\frac{2}{\pi^2\sqrt{3}}\int_{0}^{1}\frac{dw}{\sqrt{w(1-w)}}
\left[
1
- \frac{(4w-8) \epsilon}{9}
+ \frac{(48w^2-92w+70) \epsilon^{2}}{81}
+ \ldots
\right]\\
= & \frac{2}{\pi\sqrt{3}}\left[
1
+ \frac23 \epsilon
+ \frac{14}{27}\epsilon^2
+ \frac{104}{243}\epsilon^3
+ \frac{266}{729}\epsilon^4
+ \ldots
\right]
\end{align}$$
Introduce yet another variable $\lambda$ such that $t = e^{-\lambda}$, above expansion
implies near $\lambda \sim 0$.
$$\rho(e^{-\lambda})e^{-\lambda} \sim \frac{2}{\pi\sqrt{3}}\left[
1
- \frac{\lambda}{3}
+ \frac{\lambda^2}{54}
+ \frac{\lambda^3}{486}
+ \frac{\lambda^4}{5832}
+ \ldots
\right]$$
In terms of $\lambda$, the integral representation of $\text{Fr}_{n}$ is now in a form
which we can apply Watson's Lemma.
As a result, we obtain following asymptotic expansion of $\text{Fr}_n$:
$$\begin{align}
\text{Fr}_n
= & 8^n \left\{ \int_0^\Lambda e^{-n\lambda} \rho(e^{-\lambda})e^{-\lambda} d\lambda
+ O\left(\max\left( e^{-\Lambda}, \frac18 \right)^n\right) \right\}
\\
\stackrel{asy}{\sim} & 8^n \frac{2}{\pi\sqrt{3}n}\left[
1
- \frac{1}{3n}
+ \frac{1}{27n^2}
+ \frac{1}{81n^3}
+ \frac{1}{243n^4} + \ldots
\right]\tag{*1}
\end{align}$$
where $\Lambda$ is some cutoff for $\lambda$ where the Taylor expansion of $\rho(e^{-\lambda})e^{-\lambda}$ is valid.
Actually, once we figure out the leading behavior of $\text{Fr}_n$, there is a simpler
way to derive above expansion. Franel has shown $\text{Fr}_{n}$ satisfy following recurrence
relation:
$$n^2 \text{Fr}_n = (7n^2-7n+2) \text{Fr}_{n-1} + 8(n-1)^2 \text{Fr}_{n-2}\tag{*2}$$
If one write down a formal expansion of $\text{Fr}_n$ of the form
$$\text{Fr}_n = 8^n \frac{2}{\pi\sqrt{3}n}\left[ 1 + \frac{\beta_1}{n} + \frac{\beta_2}{n^2} + \ldots\right]$$
Plug this in $(*2)$ and match the coefficients, one will obtain:
$$\text{Fr}_n = 8^n \frac{2}{\pi\sqrt{3}n}\left[
1
-\frac{1}{3n}
+\frac{1}{3^3n^2}
+\frac{1}{3^4n^3}
+\frac{1}{3^5n^4}
+\frac{11}{3^7n^5}
+\frac{49}{3^9n^6}
-\frac{317}{3^9n^7}\\
-\frac{2797}{3^{10}n^8}
-\frac{61741}{3^{13}n^9}
+\frac{734467}{3^{14}n^{10}}
+ \ldots
\right]$$
An expansion consistent what we have got by other means and appeared in
answers in a nearly the same question.