Step I. We show first that $\lim_{n\to\infty}a_n=0$.
For every $x>0$, we have that
$$
0<\log(1+x)<x,
$$
and thus
$$
a_1>a_2>\cdots>a_n>a_{n+1}>\cdots >0,
$$
and thus $a_n$ converges, with $a_n\to x\ge 0$. But $a_{n+1}=\log(1+a_n)\to \log(1+x)$.
Thus $\log(1+x)=x$, which implies that $x=0$. Hence $a_n\to 0$.
Step II. We show now that $\lim_{n\to\infty}n\,a_n=2$.
We have
$$
\frac{1}{a_{n+1}}-\frac{1}{a_n}=\frac{a_n-a_{n+1}}{a_na_{n+1}}=\frac{a_n}{a_{n+1}}\cdot
\frac{1-\frac{\log(1+a_n)}{a_n}}{a_{n}}\to \frac{1}{2},
$$
since standard methods (i.e., l'Hôpital's rule) provide that
$$
\lim_{x\to 0}\frac{1-\frac{\log(1+x)}{x}}{x}=\frac{1}{2},
$$
and also
$$
\lim_{n\to\infty} \frac{a_n}{a_{n+1}}=\lim_{n\to\infty} \frac{a_n}{\log (1+a_{n})}
=\lim_{x\to 0}\frac{x}{\log(1+x)}=1.
$$
Using Stolz–Cesàro theorem
$$
\lim_{n\to\infty}\frac{1}{na_n}=\lim_{n\to\infty}\frac{\frac{1}{a_n}}{n}=
\lim_{n\to\infty}\frac{\frac{1}{a_{n+1}}-\frac{1}{a_n}}{(n+1)-n}=
\lim_{n\to\infty}\left(\frac{1}{a_{n+1}}-\frac{1}{a_n}\right)=\frac{1}{2}.
$$
This implies that the sequence $\{na_n\}$ is bounded, say by $M>0$, and hence
$$
a_n^2\le \frac{M^2}{n^2},
$$
which implies that $\sum_{n=1}^\infty a_n^2<\infty$.