0

This one I cannot just use the diagonal method right? Could anyone give any hint on solving this?

Harry Peter
  • 7,819
afsdf dfsaf
  • 1,687

4 Answers4

6

Hint: $$ D = \begin{bmatrix}2& 0 \\ 0& 2\end{bmatrix} + \begin{bmatrix}0& 1 \\ 0& 0\end{bmatrix}. $$

The two matrices in the sum commute, so you can use $\exp(A + B) = \exp(A) \exp(B)$.

Seirios
  • 33,157
arsmath
  • 2,073
2

$D=\begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix}+\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$

These two matrices commute, and the square of the second matrix is $0$ matrix.

voldemort
  • 13,182
  • 2
    Can anyone explain to me how is it that voldemort and arsmath give the same answer (apart from an important detail that it's OK not to mention so some work is left for the OP), voldemort answers first, but gets less up votes? – Git Gud Jan 30 '14 at 07:47
2

Set

$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \tag{1}$

and

$P = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \tag{2}$

so that $D = \Lambda + P$. Furthermore, since $\Lambda = 2I$, $\Lambda$ commutes with any matrix $X$, i.e. $\Lambda X = X \Lambda$. Thus we may conclude, based upon the discussion/proofs given in my answer to this question, that $\exp (D) = \exp(\Lambda + P) = \exp(\Lambda) \exp(P)$. $\Lambda = 2I$ implies $\exp(\Lambda) = e^2I$, easy to see by taking the power series for $\exp(\Lambda)$ and noting that $\Lambda = 2I$ implies $\Lambda^k = 2^kI$ for all integral $k \ge 0$, whence

$\exp(\Lambda) = \sum_0^\infty \dfrac{2^k I}{k!} = e^2 I; \tag{3}$

noting that $P^2 = 0$, we see that the series for $\exp(P)$ is truncated after the linear term, so that

$\exp(P) = I + P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \tag{4}$

and finally

$\exp(D) = \exp(\Lambda) \exp(P) = e^2I (I + P) = \begin{bmatrix} e^2 & e^2 \\ 0 & e^2 \end{bmatrix}. \tag{5}$

Hope this helps. Cheerio,

and as always,

Fiat Lux!!!

Robert Lewis
  • 71,180
0

Clearly, $$D^n=\left( \begin{matrix} 2 & 1 \\ 0 & 2 \end{matrix} \right)^n = \left( \begin{matrix} 2^n & a_n \\ 0 & 2^n \end{matrix} \right).$$ Because $$\left( \begin{matrix} 2^{n+1} & a_{n+1} \\ 0 & 2^{n+1} \end{matrix} \right) = \left( \begin{matrix} 2^n & a_n \\ 0 & 2^n \end{matrix} \right) \left( \begin{matrix} 2 & 1 \\ 0 & 2 \end{matrix} \right) = \left( \begin{matrix} 2^{n+1} & 2^n+2a_n \\ 0 & 2^{n+1} \end{matrix} \right),$$ we deduce that $a_{n+1}= 2^n+2a_n$. By induction, it is easy to prove that $a_n=n2^{n-1}$ for $n \geq 1$. Therefore, $$\exp(D)= \sum\limits_{n \geq 0} \frac{D^n}{n!} = \left( \begin{matrix} \sum\limits_{n \geq 0} \frac{2^n}{n!} & \sum\limits_{n \geq 0} \frac{n \cdot 2^n}{2 \cdot n!} \\ 0 & \sum\limits_{n \geq 0} \frac{2^n}{n!} \end{matrix} \right).$$ But $\displaystyle \sum\limits_{n \geq 0} \frac{2^n}{n!}=e^2$ and $\displaystyle \sum\limits_{n \geq 0} \frac{n \cdot 2^n}{2 \cdot n!}= \sum\limits_{n \geq 1} \frac{2^{n-1}}{(n-1)!} = e^2$. Finally, $$\exp(D)= e^2 \left( \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right).$$

Seirios
  • 33,157