Let $F_i$ be the $i$-th Fibonacci number.
We have $$\frac{1}{999,999,999,998,999,999,999,999}$$
represented in decimal form as:
0. 000 000 000 000
000 000 000 001
000 000 000 001
000 000 000 002
000 000 000 003
000 000 000 005
000 000 000 008
000 000 000 013
000 000 000 021...
This decimal works out to be $$x = 10^{-12}F_1 + 10^{-24}F_2 + 10^{-36}F_3 + \ldots + 10^{-12k}F_k + \ldots \tag{1}$$
where $x$ is our number we let $k$ range over the naturals. Multiply the above by $10^{12}$ to get $$10^{12} x = F_1 + 10^{-12}F_2 + 10^{-24}F_3 +\ldots + 10^{-12k}F_{k+1} +\ldots \tag{2}$$
Multiply the above by $10^12$ once more to get $$10^{24}x = 10^{12}F_1 + F_2 + 10^{-12}F_3 + 10^{-24}F_4 + \ldots + 10^{-12k}F_{k+2} + \ldots \tag{3}$$
Now, we work out the value of $(3) - (2) - (1)$ to get $$(10^{24} – 10^{12} – 1) x = 10^{12}F_1 + (F_2 – F_1) + 10^{-12}(F_3 – F_2 – F_1) + 10^{-24}(F_4 – F_3 – F_2) + \ldots + 10^{-12k} (F_{k+2} – F_{k+1} – F_k) + \ldots $$
Whilst this looks rather tricky to work with, we are quite privileged to be working with the Fibonacci sequence here, since it's defined as $F_n = F_{n-1} + F_{n-2}$ with the initial conditions that $F_1 = 0$ and $F_2 = 1$
Hence you get $$F_{k+2} – F_{k+1} – F_k = \left(F_{k+1} + F_k\right) – F_{k+1} – F_{k} = 0$$
so that our equation simplifies to $$(10^{24} – 10^{12} – 1)x = 1 \iff x = \frac{1}{10^{24} – 10^{12} – 1}$$
And you'll be quite pleased to note that, indeed, $$10^{24} - 10^{12} - 1 = 999,999,999,998,999,999,999,999$$