Let $\tilde u=\frac{u-b}{a}$, then $\tilde u(z)\le \big|\log |z|\big|$. Let $f$ an entire function, such that, $\mathrm{Re}\,f(z)=\tilde u(z)$. Then
$$
\left|\mathrm{e}^{\,f(z)}\right|=\mathrm{e}^{\tilde{u}(z)}\le \mathrm{e}^{|\log |z||}
=\max\big\{|z|,|z|^{-1}\big\}.
$$
So if we set $g(z)=\mathrm{e}^{\,f(z)}-\mathrm{e}^{\,f(0)},$ then $g(0)=0$, and for $|z|\ge 1$, we have
$$
|g(z)|=\big|\mathrm{e}^{\,f(z)}-\mathrm{e}^{\,f(0)}\big|\le \big|\mathrm{e}^{\,f(z)}\big|+
\big|\mathrm{e}^{\,f(0)}\big|\le |z|+c\le (c+1)|z|,
$$
and hence
$$
\left|\frac{g(z)}{z}\right|\le c+1.
$$
But $g(z)/z$ is also entire, since $g(0)=0$, and as it is bounded, it has to be constant. Thus
there is an $a\in\mathbb C$, such that
$$
g(z)=az \,\,\Longrightarrow\,\, \mathrm{e}^{\,f(z)}-\mathrm{e}^{\,f(0)}=az
\,\,\Longrightarrow\,\, \mathrm{e}^{\,f(z)}=\mathrm{e}^{\,f(0)}+az,
$$
and as $\mathrm{e}^{\,f(z)}$ does not vanish, this implies that $a=0$, and hence $f$ is constant, and so is $u$.