What is the contrapositive of the following statement: $p|ab $ and $p|a$ or $p|b$ then $p$ is prime.
number theory problem
What is the contrapositive of the following statement: $p|ab $ and $p|a$ or $p|b$ then $p$ is prime.
number theory problem
The contrapositive of
$p|ab \land (p|a \lor p|b) \Rightarrow p$ is prime
is
$p$ is not prime $\Rightarrow p \not\mid ab \lor (p\not\mid a \land p\not\mid b)$.
But I don't think those are true statements...
The contrapositive of $(P \rightarrow Q)$ is : $(\lnot Q \rightarrow \lnot P)$.
So, if we omit the initial quantifiers $\forall a \forall b \forall p$, we have :
$( p|ab \rightarrow (p|a \lor p|b) ) \rightarrow Prime(p)$
Then the contrapositive must be :
$(\lnot Prime(p) \rightarrow \lnot ( p|ab \rightarrow (p|a \lor p|b) )$.
Now, if we want to "unwind" also the inner conditional, we can take into account that : $(P \rightarrow Q)$ is equivalent to : $(\lnot P \lor Q)$, so that $\lnot (P \rightarrow Q)$, using De Morgan laws, becomes : $(\lnot \lnot P \land \lnot Q)$, and finally : $(P \land \lnot Q)$.
The translation now is :
$(\lnot Prime(p) \rightarrow ( p|ab \land \lnot (p|a \lor p|b) )$
and finally :
$(\lnot Prime(p) \rightarrow ( p|ab \land (\lnot p|a \land \lnot p|b) )$.