Show that if $AB = BA$, then $$\exp(A) \exp(B) = \exp(B) \exp(A)$$
here is what i got so far: $$\begin{align}\exp(A) \exp(B) &= (I + A + {\dfrac{1}{2}} A^2 + {\dfrac{1}{6}}A^3 + \ldots)(I + B + {\frac{1}{2}}B^2 + {\frac{1}{6}}B^3 + \ldots )\\ &= I + (A + B) + {\frac{1}{2}}(A^2 + 2AB + B^2) + {\frac{1}{6}}(A^3 + 3A^2 B + 3AB^2 + B^3 ) + \ldots\\ &= I + (A + B) + {\frac{1}{2}}(A + B)^2 + {\frac{1}{6}}(A + B)^3 + \ldots \end{align}$$
am i going the right direction so far...if so, how to get to show the rest until $\exp(B)\exp(A)$.
Thank you