4

How can I find this limit:

$$\lim_{x\rightarrow\infty} \left(\frac{x+\ln x}{x-\ln x}\right)^{\frac{x}{\ln x}}$$

StubbornAtom
  • 17,052
rab2004
  • 331

2 Answers2

7

Hint: Look at the simpler problem $$\lim_{u\rightarrow\infty}\left(\frac{u+1}{u-1}\right)^u$$

and consider $u=x/ \log x$. Can you make this transformation and find this limit instead?

MPW
  • 43,638
  • mmm I'm trying but I can't.. is it the same way like on this post: http://math.stackexchange.com/questions/12307/how-to-calculate-displaystyle-lim-x-to-infty-left-fracx2x-right?rq=1 – rab2004 Jan 25 '14 at 15:41
  • 1
    Notice that $(\frac{u+1}{u-1})^u=(\frac{u-1+2}{u-1})^u=(1+\frac{2}{u-1})^u$. – Spock Jan 25 '14 at 15:56
0

$\lim _{x \to \infty}\left(1+\frac{2\log x}{x(1-\log x/x)}\right)^{x/\log x}=e^{2}$

$\lim_{x \to \infty}\left(1+\frac{a}{x}\right)^{x}=\lim_{x \to \infty}\left(\left(1+\frac{a}{x}\right)^{\frac{x}{a}}\right)^a=e^a$

if $a(x) \to a \ne 0$, then

$\lim_{x \to \infty}\left(1+\frac{a(x)}{x}\right)^{x}=\lim_{x \to \infty}\left(\left(1+\frac{a(x)}{x}\right)^{\frac{x}{a(x)}}\right)^{a(x)}=e^a$

kmitov
  • 4,731