How can I find this limit:
$$\lim_{x\rightarrow\infty} \left(\frac{x+\ln x}{x-\ln x}\right)^{\frac{x}{\ln x}}$$
How can I find this limit:
$$\lim_{x\rightarrow\infty} \left(\frac{x+\ln x}{x-\ln x}\right)^{\frac{x}{\ln x}}$$
Hint: Look at the simpler problem $$\lim_{u\rightarrow\infty}\left(\frac{u+1}{u-1}\right)^u$$
and consider $u=x/ \log x$. Can you make this transformation and find this limit instead?
$\lim _{x \to \infty}\left(1+\frac{2\log x}{x(1-\log x/x)}\right)^{x/\log x}=e^{2}$
$\lim_{x \to \infty}\left(1+\frac{a}{x}\right)^{x}=\lim_{x \to \infty}\left(\left(1+\frac{a}{x}\right)^{\frac{x}{a}}\right)^a=e^a$
if $a(x) \to a \ne 0$, then
$\lim_{x \to \infty}\left(1+\frac{a(x)}{x}\right)^{x}=\lim_{x \to \infty}\left(\left(1+\frac{a(x)}{x}\right)^{\frac{x}{a(x)}}\right)^{a(x)}=e^a$