3

I am stuck on this question from the IB Cambridge HL math text book about Mathematical induction. I am sorry about the bad formatting I am new and have no idea how to write the summation sign.

Using mathematical induction prove that the $$\sum^n_{k=1} k2^k =(n-1)(2^{n+1})+2$$

[correction made]

I tried solving it and got stuck on the let $n=k+1$ part So first I made $n=1$ and both sides equaled to $2$ then assume $n=k$ and got an expression which I don't know how to write here because of the formatting then $n=K+1$

Thanks again

  • 1
    For $n=2$ the left hand side is $2+8=10$ but the right hand side is $4+1+2=7$. – user71352 Jan 25 '14 at 02:42
  • 1
    To write an inductive proof, you are confusing yourself when you write $n=k+1$. $k$ is a dummy variable. You want to assume $\sum^n_{k=1} k2^k =(n-1)(2^n+1)+2$, then prove $\sum^{n+1}{k=1} k2^k =(n)(2^{n+1}+1)+2$ The place to start is $$\sum^{n+1}{k=1} k2^k =\sum^n_{k=1} k2^k+(n+1)2^{n+1}\=(n-1)(2^n+1)+2+(n+1)2^{n+1}$$ Where the first just shows the extra term broken out and the second uses the induction assumption. The proof is harder when the result is not true, but this shows the organization. – Ross Millikan Jan 25 '14 at 02:47
  • I edited my proof after your edit of the equation. @user120943 – bryan.blackbee Jan 25 '14 at 08:56
  • See also http://math.stackexchange.com/questions/11464/how-to-compute-the-formula-sum-limits-r-1d-r-cdot-2r, http://math.stackexchange.com/questions/180198/what-is-the-sum-of-sum-limits-i-1nipi and other posts listed there among linked questions. – Martin Sleziak Jul 26 '14 at 09:57

5 Answers5

3

We need to prove that $$ \sum_{k=1}^nk2^k=(n-1)(2^{n+1})+2 $$ Consider $P_1$ where $k=1$. Left Hand Side (LHS) and Right Hand Side (RHS) are evaluated as follows. $$\sum_{k=1}^1k2^k=1\times2=2\quad\quad\quad\quad\quad\quad(1-1)(2^2)+2=2$$

Now, we assume that $P_m$ holds for some natural number $m$. (The trick here is that you will need to use this result later.) $$ \sum_{k=1}^mk2^k=(m-1)(2^{m+1})+2 $$

It must be shown that $P_{m+1}$ holds too. Let us prove it. The RHS, which is relatively easier is $$ \begin{align*} [(m+1)-1](2^{m+2})+2&=m(2^{m+2})+2 \end{align*} $$ What we need to do is to show that the LHS has this form:

$$ \begin{align*} \sum_{k=1}^{m+1}k2^k&=\sum_{k=1}^mk2^k+(m+1)2^{m+1}\\ &=(m-1)(2^{m+1})+2+(m+1)2^{m+1}\\ &=(m-1)(2^{m+1})+(m+1)2^{m+1}+2\\&=(2m)(2^{m+1})+2\\ &=m(2^{m+2})+2 \end{align*} $$ Since $P_1$ true, $P_m$ true $\rightarrow P_{m+1}$ true, by Mathematical Induction, $P_k$ true for $k=1, 2, \cdots$

Proven

bryan.blackbee
  • 4,161
  • 2
  • 29
  • 50
2

Let $f(n) = (n-1)2^{n+1}+2$

and $g(n)=\sum^n_{k=1} k2^k$

Then \begin{equation}\begin{aligned} f(n+1) - f(n)&= (n) 2^{n+2}+2 - (n-1)2^{n+1}-2\\ &= (2n)2^{n+1} - (n-1)2^{n+1}\\ &= (n+1)2^{n+1}\\ &= g(n+1)-g(n)\\ \end{aligned}\end{equation}

Hence $g(n)=f(n) \Rightarrow g(n+1)=f(n+1)$

Neil W
  • 2,495
  • 1
  • 13
  • 16
0

Let : $$S = \sum_{k = 1}^n k 2^k$$ We have : $$\begin{array}{lcl} S & = & \displaystyle \sum_{k = 0}^{n - 1} (k + 1) 2^{k + 1} \\[3mm] & = & \displaystyle 2 \sum_{k = 1}^{n - 1} (k 2^k + 2^k) \\[3mm] & = & \displaystyle 2 \sum_{k = 1}^{n - 1} k 2^k + 2 \sum_{k = 1}^{n - 1} 2^k \\[3mm] & = & \displaystyle 2 \left(\sum_{k = 1}^n k 2^k - n 2^n\right) + \sum_{k = 0}^n 2^k \\[3mm] & = & \displaystyle 2 \left(S - n 2^n\right) + \dfrac{2^{n + 1} - 2}{2 - 1} \\[3mm] & = & \displaystyle 2 S - n 2^{n + 1} + 2^{n + 1} - 2 \\[3mm] & = & \displaystyle 2 S - (n - 1) 2^{n + 1} - 2 \\[3mm] \end{array}$$
We deduce that : $$S = (n - 1) 2^{n + 1} + 2$$

Essaidi
  • 1,733
0

$\sum_{k=1}^{n}k2^{k}=2+(4+4)+(8+8+8)+...+(2^{n}+2^{n}+...+2^{n})$

$=(2+4+8+...+2^{n-1}+2^{n})+(4+8+...+2^{n-1}+2^{n})+(8+...+2^{n-1}+2^{n})+...+(2^{n-2}+2^{n-1}+2^{n})+(2^{n-1}+2^{n})+2^{n}$

$2(1+2+4+...+2^{n-2}+2^{n-1})+4(1+2+4+...+2^{n-3}+2^{n-2})+8(1+...+2^{n-3})+...+2^{n-2}(1+2+4)+2^{n-1}(1+2)+2^{n}$

$=2(2^{n}-1)+4(2^{n-1}-1)+8(2^{n-2}-1)+...+2^{n-2}(2^{3}-1)+2^{n-1}(2^{2}-1)+2^{n}$

$=(n-1)2^{n+1}+2^{n}-2-4-...-2^{n-1}=(n-1)2^{n+1}+2^{n}-2(2^{n-1}-1)$

$=(n-1)2^{n+1}+2$

This should be the formula. Now we prove this by induction. Both sides are $2$ at $n=1$. Assume it is true for $n\ge1$ and we show it for $n+1$.

$\sum_{k=1}^{n+1}k2^{k}=\sum_{k=1}^{n}k2^{k}+(n+1)2^{n+1}=(n-1)2^{n+1}+2+(n+1)2^{n+1}$

$=(2n)2^{n+1}+2=n2^{n+2}+2=((n+1)-1)2^{(n+1)+1}+2$.

user71352
  • 13,038
0

Answer :

Hint:

Let it be true for k from 1 to n, where $$ \sum_{k=1}^nk2^k=(n-1)(2^{n+1})+2 $$

For k from 1 to n+1, $$ \sum_{k=1}^{n+1}k2^k=(n-1)(2^{n+1})+2 + (n+1)2^{n+1}$$

If you simplify, you will get

$$ \sum_{k=1}^{n+1}k2^k=(n+1-1)2^{(n+1+1)}+2 $$

Hence Proved Thanks

Satish