Let $V$ be an inner product space and $T:V \to V$ be a linear operator. Show that $N(T)^\perp=R(T^*)$.
Trial: $N(T)=R(T^*)^\perp$ since $y \in N(T) \iff Ty=0 \iff \langle x,Ty \rangle=0 \quad \forall x \iff \langle T^*x,y \rangle=0 \quad \forall x \iff y \in R(T^*)^\perp$. Taking $\perp$ both sides, $N(T)^\perp=(R(T^*)^\perp)^\perp$. I know that for finite dimensional $W$, $(W^\perp)^\perp=W$. But in this case it may not be finite dimensional. Does it need another approach?