given the series
$$ f(x)= \sum_{n=0}^{\infty}\frac{(2x)^{n}}{n!}(-1)^{n}\frac{d^{n}}{dx^{n}}(\frac{1}{x-1})$$
how could i evaluate this for every x different from x=1 ?? thanks any hints?
or if possile the analogue series $$ g(m)=\sum_{n=0}^{\infty} \frac{1}{n!}\int_{0}^{\infty}dxln^{n}(x)x^{-m}$$