I am trying to show that if a function $f = u+iv$ is holomorphic with $\partial_z f(z)$ always non zero, then $f$ is a conformal mapping, i.e. it preserves angles between smooth curves.
If $f$ is holomorphic, by Cauchy-Riemann $$ \begin{vmatrix} u_x & u_y\\ v_x & v_y \end{vmatrix} = \begin{vmatrix} u_x & -v_x\\ v_x & u_x \end{vmatrix} = u_x^2 + v_x^2 = |\partial_z f|^2 \neq 0, $$ so changing variables $r, \theta$ s.t. $$ r = |\partial _z f(z)|, \cos \theta = \dfrac{u_x}{|\partial_z f|}, \sin \theta = \dfrac{v_x}{|\partial_z f|}$$ the jacobian matrix of $f$ becomes $$\begin{pmatrix} u_x & u_y\\ v_x & v_y \end{pmatrix} = r \begin{pmatrix} \cos \theta & - \sin \theta\\ \sin \theta & \cos \theta \end{pmatrix}.$$ Now the Jacobian indeed preserves angles since it is a composition of a rotation with a dilation. But why $f$ should also preserve angles??