1

Let $$s_n=\int_{0}^{1}\frac{nx^{n-1}}{(1+x)}\,dx$$ for $n\geq 1$.
Then where sequence $(s_n)$ converges.
There are four options (A)$0$ (B)$\frac1{2}$ (C)$1$ (D)$\infty$

asimath
  • 990

1 Answers1

4

HINT:

$$\frac{s_n}n+\frac{s_{n-1}}{n-1}=?$$

  • I do not understand how does that help...$$\frac{s_n}n+\frac{s_{n-1}}{n-1}=\int_{0}^{1}\frac{x^{n-1}}{(1+x)},dx+ \int_{0}^{1}\frac{x^{n-2}}{(1+x)},dx=\int_{0}^{1}\frac{x^{n-1}+x^{n-2}}{(1+x)} ,dx$$ but then.. :O –  Jan 15 '14 at 17:08
  • 2
    Then factor $x$, cancel and integrate – mathemagician Jan 15 '14 at 17:14
  • @mathemagician : Oh yeah!!... $$\frac{s_n}n+\frac{s_{n-1}}{n-1}=\int_{0}^{1}\frac{x^{n-1}}{(1+x)},dx+ \int_{0}^{1}\frac{x^{n-2}}{(1+x)},dx=\int_{0}^{1}\frac{x^{n-1}+x^{n-2}}{(1+x)} ,dx=\int_{0}^{1}x^{n-2},dx= :) :)$$ Done... –  Jan 15 '14 at 17:17
  • @lab bhattacharjee :Is the limit equal to 1/2 – asimath Jan 15 '14 at 17:30
  • @rajkamalmath, We have $$s_n+\frac{s_{n-1}}{\frac1{1-\frac1n}}=\frac1{\frac1{1-\frac1n}}$$

    $$\lim_{n\to\infty}s_n+\frac{\lim_{n\to\infty}s_{n-1}}{\lim_{n\to\infty}\frac1{1-\frac1n}}=\frac1{\lim_{n\to\infty}\frac1{1-\frac1n}}$$

    $$\lim_{n\to\infty}s_n+\lim_{n\to\infty}s_{n-1}=1$$ If $$\lim_{n\to\infty}s_n=S,\lim_{n\to\infty}s_{n-1}=? $$

    – lab bhattacharjee Jan 15 '14 at 18:33
  • @labbhattacharjee : so S=$\frac{1}{2}$, for that reason I have told limit is $\frac1{2}$. Thanks! – asimath Jan 15 '14 at 20:25