I'm trying to solve the following recurrence relation (Find closed formula) using generating functions:
$f(n)=10f(n-1)-25f(n-2)$, $f(0)=0$, $f(1)=1$
I'm having a small difficulty at the end and can use a nudge in the right direction.
My solution
Define $$g(x)=\sum_{n=0}^{\infty}f(n)x^n = \sum_{n=2}^{\infty}f(n)x^n+x=10\sum_{n=2}^{\infty}f(n-1)x^n-25\sum_{n=2}^{\infty}f(n-2)x^n+x =$$
$$=10x\sum_{n=2}^{\infty}f(n-1)x^{n-1}-25x^2\sum_{n=2}^{\infty}f(n-2)x^{n-2}+x =$$
$$=10x\sum_{n=1}^{\infty}f(n)x^n-25x^2\sum_{n=0}^{\infty}f(n)x^n+x$$
But since the first element of $f(n)$ is $0$, then $$10x\sum_{n=1}^{\infty}f(n)x^n=10x\sum_{n=1}^{\infty}f(n)x^n+0=10x\sum_{n=0}^{\infty}f(n)x^n$$
So overall:
$$g(x)=10x\sum_{n=0}^{\infty}f(n)x^n-25x^2\sum_{n=0}^{\infty}f(n)x^n+x=10xg(x)-25x^2g(x)+x$$
To sum up:
$$g(x)=10xg(x)-25x^2g(x)+x$$
Solve for $g(x)$ and get:
$$g(x)=\frac{x}{(x-\frac{1}{5})^2}$$
But what do I do now? How can I extract $f(n)$ from this information?