11

I got stuck on the following series: $$ \sum_{n=1}^{\infty} \left( \arctan \frac{4n - 1}{2} - \arctan \frac{4n - 3}{2} \right). $$ I can't seem to make an approach because there's $-3$ not $+3$. Please help!

Greg Martin
  • 78,820
ZeroPepsi
  • 896
  • 3
    Yes (+1) Alternating series, but is it convergent???? What happens if n goes to infinity? – imranfat Jan 14 '14 at 16:56
  • 2
    No, you are not allowed to get rid of those braces in this case! The conversion done by @CameronWilliams is wrong – user127.0.0.1 Jan 14 '14 at 17:02
  • @CameronWilliams It has nothing to do with absolute convergence. In general you are allowed to set braces whereever you want, but not to remove them. Second thing is allowed only if the resulting list is convergent as well, which is obviously not the case here. – user127.0.0.1 Jan 14 '14 at 17:18
  • 2
    It looks like the sum is $\tan^{-1}\left(\tanh\left(\frac{\pi}{2}\right)\right)$. – achille hui Jan 14 '14 at 17:24
  • This might be relevant (in the sense of "method" rather than "full solution") since we have the identity $\arctan (a)-\arctan(b)=\arctan(\frac{a-b}{1-ab})$ – Peter Košinár Jan 14 '14 at 17:42
  • If this series is indeed convergent, then changing the two arctan terms into one for sure can't be right, because then it would be divergent by alt series test. I need to ponder about this one..... – imranfat Jan 14 '14 at 18:24
  • @user127001 So is the reason why you are not allowed to do what Cameron did, because the resulting alternating series is conditionally convergent? Meaning that a divergent series can be "re-arranged" into a convergent series and vice versa? Just asking here... – imranfat Jan 14 '14 at 19:51

2 Answers2

11

Let $a_n$ be the $n^{th}$ term of the series at hand. We have $$\begin{align} a_n = & \tan^{-1}\frac{4n-1}{2} - \tan^{-1}\frac{4n-3}{2}\\ = & \tan^{-1}\left(\frac{\frac{4n-1}{2}-\frac{4n-3}{2}}{1 + \frac{4n-1}{2}\frac{4n-3}{2}}\right) = \tan^{-1}\left(\frac{1}{(2n-1)^2 + \frac34}\right)\\ \end{align}$$ Notice $\;\tan^{-1}(x) = \Im\log(1 + ix)\;$ for real $x$, we can rewrite $a_n$ as

$$a_n = \Im\left\{\log\left( 1 + \frac{i}{(2n-1)^2 + \frac34}\right)\right\} = \Im\left\{\log\left( 1 + \frac{\frac34 + i}{(2n-1)^2}\right)\right\} $$

Compare this with the factors in the infinite product expansion of $\cosh x$:

$$\cosh x = \prod_{n=1}^{\infty}\left(1 + \frac{4x^2}{(2n-1)^2\pi^2}\right)$$ We find$\color{blue}{^{[1]}}$

$$\begin{align} \sum_{n=1}^\infty a_n = &\Im\left\{\log\cosh\left(\frac{\pi}{2}\sqrt{\frac34+i}\right)\right\} = \Im\left\{\log\cosh\left[\frac{\pi}{2}\left(1 + \frac{i}{2}\right)\right]\right\}\\ = & \Im\left\{\log\left[\cosh\frac{\pi}{2} \cos\frac{\pi}{4} + \sinh\frac{\pi}{2}\sin\frac{\pi}{4}i\right]\right\} = \Im\left\{\log\left[ 1 + \tanh\frac{\pi}{2} i\right]\right\}\\ = & \tan^{-1}\left[\tanh\left(\frac{\pi}{2}\right)\right] \end{align}$$

Notes

  • $\color{blue}{[1]}$ Given any two complex numbers $u$ and $v$, $\log(uv)$ need not equal to $\log u + \log u$ in general. Instead, we have $$\log(uv) = \log u + \log v + i2\pi N$$ for some integer $N$. So in principle, $$\begin{align} a_n &= \Im\left\{\log\left( 1 + \frac{\frac34 + i}{(2n-1)^2}\right)\right\}\\ \implies \sum_{n=1}^\infty a_n &= \Im\left\{\log\prod_{n=1}^\infty\left( 1 + \frac{\frac34 + i}{(2n-1)^2}\right)\right\} + 2\pi N \end{align}$$ for some integer $N$ only. However, $a_n$ is small enough and the sum falls within the range $(-\frac{\pi}{2},\frac{\pi}{2})$, the $N$ here is actually zero. The naive looking replacement: $$\sum_{n=1}^\infty a_n \quad\longrightarrow\quad \Im\left\{\log\cosh\left(\frac{\pi}{2}\sqrt{\frac34+i}\right)\right\}$$ does work.
achille hui
  • 122,701
4

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\sum_{n = 1}^{\infty}\bracks{% \arctan\pars{4n - 1 \over 2} - \arctan\pars{4n - 3 \over 2}}:\ {\large ?}}$

\begin{align}&\color{#c00000}{\sum_{n = 1}^{\infty}\bracks{% \arctan\pars{4n - 1 \over 2} - \arctan\pars{4n - 3 \over 2}}} =\sum_{n = 0}^{\infty} \int_{\pars{4n + 1}/2}^{\pars{4n + 3}/2}{\dd x \over x^{2} + 1} \end{align}

With $\ds{x \equiv {4n + 1 \over 2} + \xi}$: \begin{align} &\bbox[10px,#ffd]{\sum_{n = 1}^{\infty}\bracks{% \arctan\pars{4n - 1 \over 2} - \arctan\pars{4n - 3 \over 2}}} =\sum_{n = 0}^{\infty} \int_{0}^{1}{\dd\xi \over \bracks{\pars{4n + 1}/2 + \xi}^{2} + 1} \\[5mm] = &\ \int_{0}^{1}\sum_{n = 0}^{\infty} {1 \over \pars{2n + 1/2 + \xi + \ic}\pars{2n + 1/2 + \xi - \ic}}\,\dd\xi \\[5mm] = &\ {1 \over 4}\int_{0}^{1}\sum_{n = 0}^{\infty} {1 \over \pars{n + 1/4 + \xi/2 + \ic/2}\pars{n + 1/4 + \xi/2 - \ic/2}}\,\dd\xi \\[5mm] = &\ {1 \over 4}\int_{0}^{1} {\Psi\pars{1/4 + \xi/2 + \ic/2} - \Psi\pars{1/4 + \xi/2 - \ic/2} \over \ic}\,\dd\xi \\[5mm] = &\ \half\,\Im\int_{0}^{1}\Psi\pars{1/4 + \xi/2 + \ic/2}\,\dd\xi \\[5mm] = &\ \Im\ln\pars{\Gamma\pars{3/4 + \ic/2} \over \Gamma\pars{1/4 + \ic/2}} = \Im\ln\pars{% \Gamma\pars{{3 \over 4} + {\ic \over 2}}\Gamma\pars{{1 \over 4} - {\ic \over 2}}} \qquad\qquad\qquad\quad\pars{1} \\[5mm] = &\ \Im\ln\pars{\pi\root{2} \over \cosh\pars{\pi/2} - \ic\sinh\pars{\pi/2}} = \arctan\pars{\tanh\pars{\pi \over 2}} \qquad\qquad\qquad\qquad\quad\pars{2} \end{align}


In $\pars{1}$ and $\pars{2}$ we used identity ${\bf\mbox{6.1.32}}$ of $\large\mbox{this table}$. \begin{align} &\bbox[10px,#ffd]{\sum_{n = 1}^{\infty} \bracks{% \arctan\pars{4n - 1 \over 2} - \arctan\pars{4n - 3 \over 2}}} \\[5mm] = &\ \bbox[10px,border:1px groove navy]{\arctan\pars{\tanh\pars{\pi \over 2}}} \approx 0.7422 \end{align}
Felix Marin
  • 89,464