$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
I&=\color{#00f}{\large\int_{0}^{\pi}{\dd x \over 1 + \cos^2\pars{x}}}=
2\int_{0}^{\pi/2}{\dd x \over 1 + \sin^{2}\pars{x}}
=
2\int_{0}^{\pi/2}{\dd x \over 1 + \bracks{1 - \cos\pars{2x}}/2}
\\[3mm]&=
2\int_{0}^{\pi}{\dd x \over 3 - \cos\pars{x}}
=2\int_{0}^{\infty}{1 \over 3 - \pars{1 - t^{2}}/\pars{1 + t^{2}}}
\,{2\,\dd t \over 1 + t^{2}}
=4\int_{0}^{\infty}{1 \over 4t^{2} + 2}\,\dd t
\\[3mm]&=\root{2}\int_{0}^{\infty}{1 \over \pars{\root{2}t}^{2} + 1}\,\root{2}\,\dd t
=\color{#00f}{\large{\root{2} \over 2}\,\pi}
\end{align}
where $\ds{t \equiv \tan\pars{x \over 2}}$.