Evaluate :
a.$$\frac{1}{2\cdot3}+\frac{1}{4\cdot5}+\frac{1}{6\cdot7}+\cdots$$
For this I looked at
$$x+x^3+x^5+\cdots=\frac{x}{1-x^2} \text{ for }|x|<1$$
Integrating the above series from $0$ to $t$ yields
$$\frac{t^2}{2}+\frac{t^4}{4}+\frac{t^6}{6}+\cdots=\int_{0}^{t}\frac{x}{1-x^2} \, dx$$
Again integrating the series from $0$ to $1$ will give $$\frac{1}{2\cdot3}+\frac{1}{4\cdot5}+\frac{1}{6\cdot7}+\cdots=\int_{0}^{1}\left(\int_{0}^{t}\frac{x}{1-x^2} \, dx\right) \, dt$$
But upon integration $\log(1-t^2) $ comes which is not defined at $t=1$
$\int \log(1-t)\ dt = (1-t) (1 - \log(1-t)) + C$. Note that $\lim_{t \to 1-} (1-t) \log(1-t) = 0$. – Robert Israel Jan 13 '14 at 03:49