Find: $$\displaystyle\lim_{x\to\infty}x\Big(\big(1+\tfrac1x\big)^x-\mathrm{e}\Big) $$
EDIT: so we have here a $\infty\cdot0$ so I'll try LHR, Edit2: I don't think LHR will get me anywhere since it will always be zero in the denominator...
Maybe develop a Taylor series ?
Wrong try:
$\displaystyle\lim_{x\to\infty}(1+\frac1x)^x=\frac 1e$ is a well known limit so:
$\lim_{x\to\infty}x(\displaystyle\lim_{x\to\infty}(1+\frac1x)^x-e)=\lim_{x\to\infty}x(\frac 1e-e)=-\infty $