I want to know how to prove this:
$$ \sum_{k=1}^\infty \arctan\left( \frac{x}{k^2+a} \right) = \pi \left\lfloor \frac{b}{\sqrt{2}} \right\rfloor + \arctan\left( \frac{x}{b^2} \right) - \arctan\left[ \tanh\left( \frac{\pi}{\sqrt{2}} \frac{x}{b} \right) \cot\left( \frac{\pi}{\sqrt{2}} b \right) \right] $$
for $0 \le a, b = \sqrt{\sqrt{x^2 + a^2} - a}$.
At least in the special case $x=1$,$a=0$
Thank you ..