1

How do I calculate the infinite sum of this series?

$$\sum_{n=1}^{\infty}n^2q^n = -\frac{q(q+1)}{(q-1)^3}\ \text{when}\ |q| < 1.$$

How does wolfram alpha get this result?

2 Answers2

4

$$ \sum_{n=1}^\infty n^2q^n=q\sum_{n=1}^\infty n^2q^{n-1}=q\cdot\frac{\text d}{\text dq}\left(\sum_{n=1}^\infty nq^n\right) $$ It is well-known that $\frac{1}{(1-x)^2}=\sum_{n=1}^\infty nx^{n-1}$ (given $|x|<1$), so we have \begin{align} \sum_{n=1}^\infty n^2q^n&=q\cdot\frac{\text d}{\text dq}\left(\frac q{(1-q)^2}\right)\\ &=q\cdot\frac{(1-q)^2+2q(1-q)}{(1-q)^4}\\ &=\frac{q(1+q)}{(1-q)^3} \end{align}

Tim Ratigan
  • 7,247
1

A related problem. Recalling the series

$$ \sum_{k=1}^{\infty} q^k = \frac{q}{1-q} $$

Now, apply the operator $(qD)^2 = (qD)(qD) $ where $D= \frac{d}{dq} $ to both sides of the above equation.