By inclusion-exclusion, the probability that all items have been painted after $m$ batches of $b$ items each have been painted is
$$
\sum_{k=0}^{100}(-1)^k\binom{100}k\left(\frac{\binom kb}{\binom{100}b}\right)^m\;.
$$
Thus the expected number of cycles required is
\begin{align}
\sum_{m=0}^\infty\left(1-\sum_{k=0}^{100}(-1)^k\binom{100}k\left(\frac{\binom kb}{\binom{100}b}\right)^m\right)
&=
\sum_{m=0}^\infty\sum_{k=0}^{99}(-1)^{k+1}\binom{100}k\left(\frac{\binom kb}{\binom{100}b}\right)^m
\\
&=
\sum_{k=0}^{99}(-1)^{k+1}\binom{100}k\frac1{1-\frac{\binom kb}{\binom{100}b}}\;.
\end{align}
For $b=2$, this is
$$
\sum_{k=0}^{99}(-1)^{k+1}\binom{100}k\frac1{1-\frac{k(k-1)}{9900}}=\\
\frac{4422524992331899897840584824409871573709079567200239855874554436668439024460525976895}{17120632903554452293765076229371169353453854260451613330736867261419928839179604592}\\\approx258.32\;,
$$
in agreement with Henry's answer. For $b=3$, it is
$$
\sum_{k=0}^{99}(-1)^{k+1}\binom{100}k\frac1{1-\frac{k(k-1)(k-2)}{970200}}\approx171.51\;,
$$