So I wrote down a question incorrectly, and it's certainly highlighted an issue for me. I was supposed to show $X^4+1$ is irreducible in $\mathbb{Q}[X]$. I wrote $P(X)=X^4+4$ instead.
Now I had seen before the trick of using "Set $f(X)=P(X+1)$, and show this is irreducible". So, I did so, obtained $X^4+4X^3+6X^2+4X+5$, which taking $p=2$ is apparently irreducible; $2|4, 2|6$ and $2^2\not|\ 5$
The issue is, I noticed $X^4+4$ IS reducible! It factors to $(x^2-2 x+2) (x^2+2 x+2)$.
I've seen other notes which mention using this idea, and I checked the criterion to be sure I wasn't being silly.. I really don't know what's going on! What apparent restrictions are there to using this method?