$Edit: Thank to @Did and @Robjohn I have succeeded:
I am going to use Lebesgue's Dominated Convergence Theorem.
Let In denote the nth integral and $H_n=\sum_{k=1}^n\frac{1}{k}$,
$$I_n=\frac{1}{n!}\displaystyle\int_0^\infty\frac{1}{(1+x)(1+\frac{x}{2})...(1+\frac{x}{n})}dx=\frac{1}{n!H_n}\displaystyle\int_0^\infty\frac{1}{(1+\frac{u}{H_n})...(1+\frac{u}{nH_n})}dx$$ with $u=xH_n$
Then we have $(1+\frac{u}{H_n})...(1+\frac{u}{nH_n})\xrightarrow[n\to+\infty]. e^u\tag{1}$
Proof: $$ln((1+\frac{u}{H_n})...(1+\frac{u}{nH_n}))=\sum_{k=1}^n ln(1+\frac{u}{kH_n})$$
Yet we know that : $\forall u\in[0,1], u-\frac{u^2}{2}\leq ln(1+u)\leq u$
$$\sum_{k=1}^n(\frac{u}{kH_n}-\frac{u^2}{2k^2H_n^2})\leq\sum_{k=1}^n ln(1+\frac{u}{kH_n})\leq \frac{u}{H_n}\sum_{k=1}^n \frac{1}{k}$$
$$u-\frac{u^2}{2H_n^2}\sum_{k=1}^n\frac{1}{k^2}\leq\sum_{k=1}^n ln(1+\frac{u}{kH_n})\leq u$$
Furthermore, the series $\sum\frac{1}{k^2}< \infty$, so $\sum_{k=1}^\infty\frac{1}{k^2}=S$
Therefore, $$e^u\leq \lim_{n\rightarrow\infty} \prod_{k=1}^n (1+\frac{u}{kH_n})\leq e^u$$ QED
The last step:
$$(1+\frac{u}{H_n})...(1+\frac{u}{nH_n})\geq 1+u+\frac{u^2}{H_n^2}(\sum_{1\leq i<j\leq n} \frac1{ij})$$
$$=1+u+\frac{u^2}{H_n^2}(H_n^2-\sum_{1}^n\frac1{i^2})$$
$$\geq 1+u+u^2(1-\frac{\pi^2}{6H_n^2})$$
$$\geq 1+u+\frac{u^2}{2}\tag{2}$$
(1)+(2)+Lebesgue's Dominated Convergence Theorem $\Longrightarrow \int_0^\infty\frac{\mathrm{d}x}{(x+1)(x+2)\cdots(x+n)}\sim\frac1{n!\ln(n)}$