$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\sum_{k = 1}^{n}\pars{-1}^{k - 1}{n \choose k}H_{k}} =
-\sum_{k = 1}^{n}H_{k}\,\pars{-1}^{k}{n \choose n - k}
\\[5mm] = &\
-\sum_{k = 1}^{n}H_{k}\,\pars{-1}^{k}\bracks{z^{n - k}}
\pars{1 + z}^{n} =
-\bracks{z^{n}}\pars{1 + z}^{n}\sum_{k = 1}^{n}H_{k}\,\pars{-z}^{k} \\[5mm] = &\
\bracks{z^{n}}\pars{1 + z}^{n}\,{\ln\pars{1 + z} \over 1 + z} =
\bracks{z^{n}}\pars{1 + z}^{n - 1}\bracks{\nu^{1}}\pars{1 + z}^{\nu} \\[5mm] = &\
\bracks{\nu^{1}}\bracks{z^{n}}\pars{1 + z}^{n + \nu - 1} =
\bracks{\nu^{1}}{n + \nu - 1 \choose n} =
\bracks{\nu^{1}}
{\Gamma\pars{n + \nu} \over \Gamma\pars{n + 1}\Gamma\pars{\nu}}
\\[5mm] = &\
\bracks{\nu^{1}}\nu\,
{\Gamma\pars{n + \nu} \over \Gamma\pars{n + 1}\Gamma\pars{\nu + 1}} =
\bracks{\nu^{0}}
{\Gamma\pars{n + \nu} \over \Gamma\pars{n + 1}\Gamma\pars{\nu + 1}}
\\[5mm] = &\
{\Gamma\pars{n} \over \Gamma\pars{n + 1}\Gamma\pars{1}} =
\bbx{\large{1 \over n}} \\ &
\end{align}