Are the following statements true or false, where $a$ and $b$ are positive integers and $p$ is prime? In each case, give a proof or a counterexample:
(b) If $\gcd(a,p^2)=p$ and $\gcd(b,p^2)=p^2$, then $\gcd(ab,p^4)=p^3$.
(d) If $\gcd(a,p^2)=p$ then $\gcd(a+p,p^2)=p$.(b) No: take $a=p$ and $b=p^3$.
(d) No: take $a=p=2$.
(b) $\gcd(\color{brown}{a}, \color{seagreen}{p^2}) = p \implies p|a \implies \color{brown}{pk_1=a} $ for some integer $k_1$. $\; p|\color{seagreen}{p^2}$ is always true — forget it.
$\gcd(\color{brown}{b}, \color{seagreen}{p^2}) = p^2 \implies p^2|b \implies \color{brown}{p^2k_2=b} $ for some integer $k_2$. $\; p^2|\color{seagreen}{p^2}$ is always true — forget it.
(1) Thence $\gcd(\color{brown}{ab},p^4) = \gcd(\color{brown}{pk_1 \cdot p^2k_2}, p^4)$. Now what?
(d) Exactly like part (b), $\gcd(\color{brown}{a}, \color{seagreen}{p^2}) = p$ is postulated. $\gcd(a+p,p^2) = p$ is postulated, but $\gcd(a+p,p^2) = p \iff p|(a + p)$.
(2) Thence $\gcd(\color{brown}{a}+p,p^2) = \gcd(\color{brown}{pk_1} + p, p^2)$ Now what?
(3) In Bill Dubuque's answer, why $\color{blue}{p\nmid \bar a}$?
Origin — Elementary Number Theory — Jones — p24 — Exercise 2.3
Similar questions — 713064, If $\gcd(a,b)=1$, then $\gcd(a+b,a^2 -ab+b^2)=1$ or $3$., calculate the gcd of $a+b$ and $p^4$, Values of $\gcd(a-b,\frac{a^p-b^p}{a-b} )$