$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi}{x \over x^{2} + \ln^{2}\pars{2\sin\pars{x}}}\,\dd x = 2:
\ {\large ?}}$
\begin{align}&\color{#c00000}{%
\int_{0}^{\pi}{x \over x^{2} + \ln^{2}\pars{2\sin\pars{x}}}\,\dd x}
=-\,\Im\int_{0}^{\pi}{\dd x \over x\ic + \ln\pars{2\sin\pars{x}}}
\\[3mm]&=-\,\Im
\int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{\dd z/\pars{\ic z}\over
\ln\pars{z} + \ln\pars{2\bracks{z^{2} - 1}/\bracks{2\ic z}}}
\\[3mm]&=\Re
\int_{\verts{z}\ =\ 1\atop{\vphantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi}}
{1 \over \ln\pars{\bracks{1 - z^{2}}\ic}}\,{\dd z \over z}
\end{align}
We close the contour with the 'line segment'
$\ds{\braces{\pars{x,0}\ \mid\ x \in \pars{-1,1}}}$ with 'indented points' at $\ds{z = -1,0,1}$. I t turns out that the whole contribution to the integral arises from the 'indented point' at $\ds{z = 0}$: See my detailed calculation in one of my previous answers which is very close to the present one. Then,
\begin{align}&\color{#66f}{\large%
\int_{0}^{\pi}{x \over x^{2} + \ln^{2}\pars{2\sin\pars{x}}}\,\dd x}
=\left. -\lim_{\epsilon\ \to\ 0^{+}}\Re\int_{\pi}^{0}
{1 \over \ln\pars{\bracks{1 - z^{2}}\ic}}\,{\dd z \over z}
\right\vert_{\,z\ \equiv\ \epsilon\expo{\ic\theta}}
\\[3mm]&=-\,\Re\int_{\pi}^{0}{1 \over \ln\pars{\ic}}\,\ic\,\dd\theta
=-\,\Re\int_{\pi}^{0}{1 \over \pi\,\ic/2}\,\ic\,\dd\theta
=-\,{2 \over \pi}\int_{\pi}^{0}\dd\theta
=\color{#66f}{\Large 2}
\end{align}