We have:
$$\eqalign{
D&=(x-\mu)^T\Sigma^{-1}(x-\mu) \cr
\Sigma&=\Sigma^T \cr
D&\in\mathbb{R} \cr
x,\mu&\in\mathbb{R}^N \cr
\Sigma&\in\mathbb{R}^{N\times N} \cr
} $$
We want to find $\frac{\partial D}{\partial \mu}\in\mathbb{R}^N$ and $\frac{\partial D}{\partial \Sigma}\in\mathbb{R}^{N\times N}$, with:
$$\eqalign{
\left(\frac{\partial D}{\partial \mu}\right)_i&=\frac{\partial D}{\partial \mu_i} \cr
\left(\frac{\partial D}{\partial \Sigma}\right)_{ij}&=\frac{\partial D}{\partial \Sigma_{ij}} \cr
} $$
We'll start by finding $\frac{\partial D}{\partial \mu}$, by first noting that we can express $\frac{\partial D}{\partial \mu}$ using the total differential of a small change $dD$ in $D$ with respect to a small change $d\mu$ in the vector $\mu$ as follows (I'll abuse notation slightly and write $D(\mu)$ as a function of $\mu$):
$$\eqalign{
D(\mu) &= (x-\mu)^T\Sigma^{-1}(x-\mu) \\
D(\mu + d\mu) - D(\mu) =& \sum_{i=1}^N\left[ \frac{\partial D}{\partial \mu_i} d\mu_i \right] \\
=& \left( \frac{\partial D}{\partial \mu} \right)^T d\mu \\
=& (x-\mu - d\mu)^T\Sigma^{-1}(x-\mu - d\mu) - (x-\mu)^T\Sigma^{-1}(x-\mu) \\
=& (x-\mu)^T\Sigma^{-1}(x-\mu) - (x-\mu)^T\Sigma^{-1}d\mu \\
& - d\mu^T\Sigma^{-1}(x-\mu) + d\mu^T\Sigma^{-1}d\mu \\
& - (x-\mu)^T\Sigma^{-1}(x-\mu) \\
=& -2 (x-\mu)^T\Sigma^{-1}d\mu \\
=& 2 \Bigl(\Sigma^{-1} (\mu - x) \Bigr)^Td\mu \\
\Rightarrow \quad \frac{\partial D}{\partial \mu} =& 2 \Sigma^{-1} (\mu - x)
}$$
To find $\frac{\partial D}{\partial \Sigma}$, we'll similarly note that the partial derivative $\frac{\partial D}{\partial A}$ of the scalar $D$ with respect to any matrix $A$ can be expressed in terms of the total differential of a small change $dD$ in $D$ with respect to a small change $dA$ in the matrix $A$, which we can express in terms of the trace operator $\mathrm{Tr}(A) = \sum_{i}{\Bigl[A_{ii}\Bigr]}$ as follows:
$$\eqalign{
dD&=\sum_{i,j}{\left[\frac{\partial D}{\partial A_{ij}}dA_{ij}\right]} \cr
&=\sum_{i,j}{\left[\left(\frac{\partial D}{\partial A}\right)_{ij}dA_{ij}\right]} \cr
&=\sum_{i,j}{\left[\left(\frac{\partial D}{\partial A}\right)^T_{ji}dA_{ij}\right]} \cr
&=\sum_{j}{\left[\left(\frac{\partial D}{\partial A}^TdA\right)_{jj}\right]} \cr
&=\mathrm{Tr}\left(\frac{\partial D}{\partial A}^TdA\right) \cr
} $$
We'll now introduce the notation $A:B=\mathrm{Tr}(A^TB)$ (note that the $:$ operator can be thought of like a dot-product between two matrices, which takes two matrices as input and returns a scalar, by multiplying the two matrices element-wise and summing all the elements), and note the following identities of the trace operator:
$$\eqalign{
\mathrm{Tr}(AB) &= \sum_{i}{\left[(AB)_{ii}\right]}=\sum_{i,j}{\left[(A_{ij}B_{ji})\right]}=\sum_{i,j}{\left[B_{ji}A_{ij}\right]}=\sum_{j}{\left[(BA)_{jj}\right]}=\mathrm{Tr}(BA) \\
\mathrm{Tr}(A) &= \sum_{i}{\left[A_{ii}\right]} = \sum_{i}{\left[A^T_{ii}\right]} = \mathrm{Tr}(A^T) \\
\mathrm{Tr}(A^T B^T) &= \mathrm{Tr}((BA)^T) = \mathrm{Tr}(BA) = \mathrm{Tr}(AB)
}$$
Therefore we have, for any matrix $A$:
$$\eqalign{
dD &= \frac{\partial D}{\partial A}:dA \\
} $$
Returning to $\frac{\partial D}{\partial \Sigma}$ (again I'll abuse notation slightly and write $D(\Sigma)$ as a function of $\Sigma$, and also introduce $z = x - \mu$ for brevity):
$$\eqalign{
D(\Sigma) &= z^T\Sigma^{-1}z \\
D(\Sigma + d\Sigma) - D(\Sigma) &= \frac{\partial D}{\partial \Sigma}:d\Sigma \\
&= z^T (\Sigma + d\Sigma)^{-1} z - z^T \Sigma^{-1} z \\
&= z^T \Bigl((\Sigma + d\Sigma)^{-1} - \Sigma^{-1} \Bigr) z \\
&= z^T \Bigl((\Sigma + d\Sigma)^{-1} \cdot \Sigma \cdot \Sigma^{-1} - (\Sigma + d\Sigma)^{-1} \cdot (\Sigma + d\Sigma) \cdot \Sigma^{-1} \Bigr) z \\
&= z^T (\Sigma + d\Sigma)^{-1} \cdot \Bigl(\Sigma - \Sigma - d\Sigma\Bigr) \cdot \Sigma^{-1} z \\
&= - z^T (\Sigma + d\Sigma)^{-1} \cdot d\Sigma \cdot \Sigma^{-1} z \\
&= - z^T \Sigma^{-1} \cdot d\Sigma \cdot \Sigma^{-1} z \\
&= \mathrm{Tr}\Bigl( - z^T \Sigma^{-1} \cdot d\Sigma \cdot \Sigma^{-1} z \Bigr) \\
&= \mathrm{Tr}\Bigl( - z z^T \Sigma^{-1} \cdot d\Sigma \cdot \Sigma^{-1} \Bigr) \\
&= \mathrm{Tr}\Bigl( - \Sigma^{-1} z z^T \Sigma^{-1} \cdot d\Sigma \Bigr) \\
&= - \Sigma^{-1} z z^T \Sigma^{-1} : d\Sigma \\
\Rightarrow \quad \frac{\partial D}{\partial \Sigma} &= - \Sigma^{-1} z z^T \Sigma^{-1}
} $$