Is $\left(\sum\limits_{i=1}^N (a_i+b_i)^2\right)^2 \text{equal to} \sum\limits_{i=1}^N (a_i+b_i)^4 $ where $a_i,b_i \in \mathbb{R}$ ??
If not then how to expand: $\left(\sum\limits_{i=1}^N (a_i+b_i)^2\right)^2$
Thanks
Is $\left(\sum\limits_{i=1}^N (a_i+b_i)^2\right)^2 \text{equal to} \sum\limits_{i=1}^N (a_i+b_i)^4 $ where $a_i,b_i \in \mathbb{R}$ ??
If not then how to expand: $\left(\sum\limits_{i=1}^N (a_i+b_i)^2\right)^2$
Thanks
Hint: Let $u_i=(a_i+b_i)^2$, and notice that $(\sum_{i}u_i)^2=\sum_{i,j}u_iu_j$ then you go from there.
See Expansion of the square of the sum of $N$ numbers.
\begin{equation*} [\sum_{i=1}^N(a_i+b_i)^2]^2 = \sum_{i=1}^N (a_i+b_i)^4 + 2 \sum_{i=1}^N \sum_{j=1}^{i-1} (a_i+b_i)^2(a_j+b_j)^2 \end{equation*}