I have the following question.
Suppose I have a formal power series $f(x)=\sum\limits_{i=0}^\infty c_ix^i$ with real coefficients. Suppose that all the derivatives $f'(1),f''(1),\dots,f^{(n)}(1),\dots$ of $f(x)$ at the point $x=1$ are zero.
What can I say about the coefficients $c_i$? I want to say that they all must be zero, but when I try to write down the system of equations, I get infinite systems, and each equation involves infinitely many variables. Is there a nice way to solve this problem?
Thank you!