5

Use the product formula for $1/\Gamma(z)$ to prove that $$\Gamma'(1)=-\gamma$$


I know that for Euler constant $\gamma$,

$$\frac{1}{\Gamma(z)} =ze^{\gamma z}\prod _{k=1}^{\infty} (1+\frac{z}{k})e^{-z/k}$$

But I cannot prove it properly. Please show me explicitly. Thank you:)

1190
  • 6,458
  • 4
  • 43
  • 97

1 Answers1

11

$$\log\Gamma(z)=-\log z-\gamma z-\sum_{k=1}^\infty\left[\log\left(1+\frac zk\right)-\frac zk\right]\implies$$

$$\frac{\Gamma'(z)}{\Gamma(z)}=-\frac1z-\gamma-\sum_{k=1}^\infty\left(\frac1k\frac k{k+z}-\frac1k\right)=-\frac1z-\gamma-\sum_{k=1}^\infty\left(\frac1{k+z}-\frac1k\right)\implies$$

$$\Gamma'(1)=\frac{\Gamma'(1)}{\Gamma(1)}=-1-\gamma-\left(\frac12-1+\frac13-\frac12+\ldots\right)=-1-\gamma-(-1)=-\gamma$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287