Determine value the following: $$L=\sum_{k=1}^{\infty}\frac{1}{k^k}$$
My try:
Put $$a_n=\sum_{k=1}^{n}\frac{1}{k^k}\to a_{n}-a_{n-1}=\frac{1}{n^n}>0$$
$\to \left\{a_n\right\}$ sequence increasing.
And $$a_{n}=\sum_{k=1}^{n}\frac{1}{k^k}=1+\sum_{k=2}^{n}\frac{1}{k^k}<1+\sum_{k=2}^{n}\frac{1}{k^2}<1+\sum_{k=2}^{n}\frac{1}{(k-1)k}=2-\frac{1}{n}<2$$
$\to \left\{a_n\right\}$ sequence converge.
But come here, I don't know how to determine value
Therefore, please help me, I need a solution.