8

Determine value the following: $$L=\sum_{k=1}^{\infty}\frac{1}{k^k}$$

My try:

Put $$a_n=\sum_{k=1}^{n}\frac{1}{k^k}\to a_{n}-a_{n-1}=\frac{1}{n^n}>0$$

$\to \left\{a_n\right\}$ sequence increasing.

And $$a_{n}=\sum_{k=1}^{n}\frac{1}{k^k}=1+\sum_{k=2}^{n}\frac{1}{k^k}<1+\sum_{k=2}^{n}\frac{1}{k^2}<1+\sum_{k=2}^{n}\frac{1}{(k-1)k}=2-\frac{1}{n}<2$$

$\to \left\{a_n\right\}$ sequence converge.

But come here, I don't know how to determine value

Therefore, please help me, I need a solution.

Iloveyou
  • 2,503
  • 1
  • 16
  • 18

1 Answers1

3

$$\sum_{k=1}^{\infty}\dfrac{1}{k^k}=\int_{0}^{1}\dfrac{1}{x^x}dx$$ (Here has a proof.)

Shuchang
  • 9,800
math110
  • 93,304