The number of real roots of the equation $\displaystyle 1+\frac{x}{1}+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{x^5}{5}+\frac{x^6}{6}+\frac{x^7}{7} = 0$
$\bf{My\; Try}::$ Let $\displaystyle f(x) = 1+\frac{x}{1}+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{x^5}{5}+\frac{x^6}{6}+\frac{x^7}{7}$
Now $\displaystyle f^{'}(x) = 1+x+x^2+x^3+x^4+x^5+x^6$
and $\displaystyle f^{''}(x) = 1+2x+3x^2+4x^3+5x^4+6x^5$
$\displaystyle f^{'''}(x) = 0+2+6x+12x^2+20x^3+30x^4 = 2\left(1+3x+6x^2+10x^3+15x^4\right)$
Now I did not understand how can i solve it
Help Required
Thanks