As a part of my research project, I encounter a difficulty to compute the period of a binary cat matrix $C$, which is a square matrix of dimension $n$ with the following properties
- $|\rm{det}(C)|=1$
- $\forall i,j\in[1,n], C(i,j)=0\,or\,1$
For example,
$\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\\\end{array}\right]$ is of period 1.
$\left[\begin{array}{ccc}1&0&0\\1&1&0\\0&0&1\\\end{array}\right],\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&1&1\\\end{array}\right],\left[\begin{array}{ccc}1&1&1\\0&0&1\\0&1&0\\\end{array}\right]$ are of period 2.
$\left[\begin{array}{ccc}1&0&0\\0&0&1\\1&1&1\\\end{array}\right],\left[\begin{array}{ccc}0&1&1\\1&1&0\\0&0&1\\\end{array}\right],\left[\begin{array}{ccc}0&1&1\\0&1&0\\1&1&1\\\end{array}\right]$ are of period 3.
$\left[\begin{array}{ccc}1&0&1\\1&1&0\\0&0&1\\\end{array}\right],\left[\begin{array}{ccc}1&1&0\\0&0&1\\0&1&0\\\end{array}\right],\left[\begin{array}{ccc}0&0&1\\1&1&0\\1&0&0\\\end{array}\right]$ are of period 4.
$\left[\begin{array}{ccc}1&1&1\\1&1&0\\1&0&0\\\end{array}\right],\left[\begin{array}{ccc}1&1&0\\0&0&1\\1&0&0\\\end{array}\right],\left[\begin{array}{ccc}0&0&1\\0&1&1\\1&1&1\\\end{array}\right]$ are of period 7.
Here the period of a cat matrix is defined as $$T = \arg\min_{t\in\{1,2,\cdots\}} \{ \rm{mod}(C^t,2) = \mathbb{I}\} $$ where $\mathbb{I}$ is the identity matrix of dimension $n$.
My question is " is there any better (faster) method to compute the period of a binary Cat matrix without using the above period definition? ". My intuition says this period should somewhat relate to the structure of a cat matrix, but I donot know how. Does anyone have any thoughts?