Hint 1: The answer is yes. (I hope it isn't from a multiple choice test and I just gave the entire thing away.)
Hint 2: Consider the functions $g_m = \lvert f_m\rvert$ and $G_n = \sum\limits_{m=1}^n g_m$. Use Minkowski's inequality (the triangle inequality) and monotone convergence.
Hint 3: Absolute convergence implies convergence.
Let $S = \sum\limits_{m=1}^\infty \lVert f_m\rVert_9$. By assumption $S < \infty$, and for all $n$ we have $$\lVert G_n\rVert_9 \leqslant \sum_{m=1}^n\lVert g_m\rVert_9 = \sum_{m=1}^n \lVert f_m\rVert_9 \leqslant S.$$ $(G_n)$ is a monotone sequence of non-negative functions, and so is $(G_n^9)$, so the pointwise limit $G(x) = \lim\limits_{n\to\infty} G_n(x)$ exists ($[0,\infty]$-valued), and the monotone convergence theorem tells us $$\int_X G(x)^9\,d\mu = \lim_{n\to\infty} \int_X G_n(x)^9\,d\mu \leqslant S^9 < \infty.$$ Since $G^9$ is integrable, $N = \{ x : G(x) = +\infty\}$ is a $\mu$-null set. On $X\setminus N$ we have $\sum\limits_{m=1}^\infty \lvert f_m(x)\rvert < \infty$, that is, $\sum\limits_{m=1}^\infty f_m(x)$ converges absolutely almost everywhere. A fortiori, $\sum\limits_{m=1}^\infty f_m(x)$ converges almost everywhere (to a finite limit).