While $\,3\nmid 2^n\,$ follows by FTA = existence & uniqueness of prime factorizations, we can give a much simpler modular arithmetic proof that $\rm \ a\nmid (a\!-\!1)^n =: \color{#0a0}b,\,$ for all integers $\rm\ \color{brown}{a\ne \pm1},\ $namely
$\rm mod\,\ a\!:\,\ \color{#c00}{a\equiv 0}\ \Rightarrow \color{#0a0}b = (\color{#c00}{a}\!-\!1)^n\equiv (\color{#c00}{0}\!-\!1)^n \equiv \pm1 \color{#0a0}{\not\equiv 0}\ \ (else\ \ \color{brown}{a\mid\pm1})\,$ by Congruence Laws
So we have shown $\rm\ \color{#0a0}{b\not\equiv 0}\pmod a,\:$ i.e. $\rm\,\ a\nmid b.\ \ \bf\small QED$
Alternatively, if modular arithmetic is unfamiliar, we can prove it by induction, with the inductive step being $\rm\ a\mid \color{brown}{(a\!-\!1)n}\ \Rightarrow\ a\mid n = an-\color{brown}{(a\!-\!1)n}\ $ [which is a special case of Euclid's Lemma, i.e. $\rm\, (a,m)=1,\ a\mid mn\,\Rightarrow\, a\mid n\,$]. $ $ So $\rm\ a\mid (a\!-\!1)^n \Rightarrow\ a\mid (a\!-\!1)^{n-1} \Rightarrow \cdots \Rightarrow\ a\mid 1.$
Or we can use the Binomial Theorem to write $\rm\, (a-1)^n = (\cdots)a + (-1)^n,\,$ which is essentially equivalent to the first proof using congruence arithmetic.