4

How to integrate $dx \over \sqrt{1 + x^2}$? Answer should be $\log ( x + \sqrt{1 + x^2})$

Please help as possible...

Thank you

5 Answers5

7

Let $\displaystyle I = \int \dfrac{1}{\sqrt{1+x^2}}~\mathrm dx.~ $Let $\tan u = x.$ Then $\sec^2 u ~\mathrm du = \mathrm dx,~u = \arctan x$ and $$ \begin{align*}I & = \int \sec u~ \mathrm du = \log (\tan u + \sec u)+C\\ & = \log\left(x + \sqrt{1 + x^2}\right) + C~. \end{align*}$$

Feel free to ask questions if anything is unclear.

Nana
  • 8,351
3

We have $$\int \frac{1}{\sqrt{1+x^2}}\, dx.$$

We make the following substitution. Let $$ \begin{align*} x&=\tan \theta \\ dx &= \sec^2 \theta \, d \theta\\ 1+x^2&=1+\tan^2 \theta \\ &=\sec^2 \theta. \end{align*} $$ Hence our integral becomes $$ \begin{align*} \int \frac{1}{\sqrt{1+x^2}}\, dx &= \int\frac{\sec^2 \theta \, d \theta}{\sqrt{\sec^2 \theta}}\\ &=\int \sec \theta \, d \theta \\ &=\ln |\sec \theta + \tan \theta|+c. \end{align*} $$

For the back substitution, since $$\tan \theta = \frac{x}{1},$$

we can form a right triangle with side opposite $\theta$ equal to $x$, and side adjacent to $\theta$ equal to $1$. Hence the hypoteneuse will have length $\sqrt{1+x^2}$. We can now read straight from the right triangle and back substitute,

\begin{align*} \ln |\sec \theta + \tan \theta|+c &= \ln \left | \frac{\sqrt{1+x^2}}{1}+\frac{x}{1} \right |+c\\ &=\ln \left | \sqrt{1+x^2}+x \right |+c. \end{align*}

J. W. Perry
  • 5,447
  • 3
  • 22
  • 28
3

A possibility is to use the following properties of the inverse hyperbolic function $\operatorname{arcsinh}x$:

  1. $(\operatorname{arcsinh}x)' =\dfrac{1}{\sqrt{1+x^{2}}}\qquad$ (Wikipedia entry)
  2. $\operatorname{arcsinh}x =\ln \left( x+\sqrt{x^{2}+1}\right)$ (Wikipedia entry)
2

Let $x=iy$, where $i=\sqrt{-1}$ . Then the integral becomes $\displaystyle\int\frac{i\cdot dy}{\sqrt{1-y^2}}=i\arcsin y=i\arcsin\frac xi$ $=i\cdot\arcsin(-ix)=i\cdot(-i)\cdot\text{arcsinh }x=\text{arcsinh }x=\ln(x+\sqrt{1+x^2})$ . See here and here for more details.

Lucian
  • 48,334
  • 2
  • 83
  • 154
2

Let $\displaystyle 1+x^2=y^2\Rightarrow \sqrt{1+x^2} = y,$ and $2xdx = 2ydy$

$$\displaystyle xdx = ydy\Rightarrow \frac{dx}{y} = \frac{dy}{x} = \frac{d(x+y)}{(x+y)}$$ (Using Ratio and Proportion).

Now $$\displaystyle \int \frac{1}{\sqrt{1+x^2}}dx = \int \frac{dx}{y} = \int \frac{d(x+y)}{(x+y)} = \ln \left|x+y\right|+C$$

So $$\displaystyle \int \frac{1}{\sqrt{1+x^2}}dx = \ln \left|x+\sqrt{x^2+1}\right|+\mathbb{C}$$

juantheron
  • 53,015