How to integrate $dx \over \sqrt{1 + x^2}$? Answer should be $\log ( x + \sqrt{1 + x^2})$
Please help as possible...
Thank you
How to integrate $dx \over \sqrt{1 + x^2}$? Answer should be $\log ( x + \sqrt{1 + x^2})$
Please help as possible...
Thank you
Let $\displaystyle I = \int \dfrac{1}{\sqrt{1+x^2}}~\mathrm dx.~ $Let $\tan u = x.$ Then $\sec^2 u ~\mathrm du = \mathrm dx,~u = \arctan x$ and $$ \begin{align*}I & = \int \sec u~ \mathrm du = \log (\tan u + \sec u)+C\\ & = \log\left(x + \sqrt{1 + x^2}\right) + C~. \end{align*}$$
Feel free to ask questions if anything is unclear.
We have $$\int \frac{1}{\sqrt{1+x^2}}\, dx.$$
We make the following substitution. Let $$ \begin{align*} x&=\tan \theta \\ dx &= \sec^2 \theta \, d \theta\\ 1+x^2&=1+\tan^2 \theta \\ &=\sec^2 \theta. \end{align*} $$ Hence our integral becomes $$ \begin{align*} \int \frac{1}{\sqrt{1+x^2}}\, dx &= \int\frac{\sec^2 \theta \, d \theta}{\sqrt{\sec^2 \theta}}\\ &=\int \sec \theta \, d \theta \\ &=\ln |\sec \theta + \tan \theta|+c. \end{align*} $$
For the back substitution, since $$\tan \theta = \frac{x}{1},$$
we can form a right triangle with side opposite $\theta$ equal to $x$, and side adjacent to $\theta$ equal to $1$. Hence the hypoteneuse will have length $\sqrt{1+x^2}$. We can now read straight from the right triangle and back substitute,
\begin{align*} \ln |\sec \theta + \tan \theta|+c &= \ln \left | \frac{\sqrt{1+x^2}}{1}+\frac{x}{1} \right |+c\\ &=\ln \left | \sqrt{1+x^2}+x \right |+c. \end{align*}
A possibility is to use the following properties of the inverse hyperbolic function $\operatorname{arcsinh}x$:
Let $\displaystyle 1+x^2=y^2\Rightarrow \sqrt{1+x^2} = y,$ and $2xdx = 2ydy$
$$\displaystyle xdx = ydy\Rightarrow \frac{dx}{y} = \frac{dy}{x} = \frac{d(x+y)}{(x+y)}$$ (Using Ratio and Proportion).
Now $$\displaystyle \int \frac{1}{\sqrt{1+x^2}}dx = \int \frac{dx}{y} = \int \frac{d(x+y)}{(x+y)} = \ln \left|x+y\right|+C$$
So $$\displaystyle \int \frac{1}{\sqrt{1+x^2}}dx = \ln \left|x+\sqrt{x^2+1}\right|+\mathbb{C}$$