Find equation of a tangent on $y= \sin2x$ in intersections with $y=\frac{1}{2}$
What I calculated:
Intersections: $$\sin2x= \frac{1}{2}$$ ... $$0=tg^2x-4tgx-1$$
$$tgx_{1}=2+\sqrt{3}$$
$$x_{1}=75+k\pi$$
$$tgx_{2}=2-\sqrt{3}$$
$$x_{2}=15+ k\pi$$
$$T_{1}(75+k\pi,\frac{1}{2})$$ and $$T_{2}(15+k\pi,\frac{1}{2})$$
Derivative of $y= sin2x$ is: $y'= 2cos2x$ $$ y'(75)= -\sqrt {3} =k_{t_{1}} $$ $$y'(15)= \sqrt {3} =k_{t_{2}}$$ formula for calculating tangent that I used: $y-y_{1}=k_{t}(x-x_{1})$
1.)$T_{1}(75+k\pi,\frac{1}{2})$
$k_{t_{1}}=-\sqrt {3}$
$y_{1}-\frac{1}{2}=-\sqrt {3}(x-75-k\pi)$
$y_{1}=-\sqrt {3}x+75\sqrt {3}+\sqrt {3}k\pi+\frac{1}{2}$
2.)$T_{2}(15+k\pi,\frac{1}{2})$
$k_{t_{2}}=\sqrt {3}$
$y_{2}-\frac{1}{2}=\sqrt {3}(x-15 -k\pi)$
$y_{2}=\sqrt {3}x-15\sqrt {3}-\sqrt {3}k\pi+\frac{1}{2}$
Both solutions are wrong; what I should actually get: $y_{1}=\sqrt{3}x-\frac{\sqrt{3}pi-6+12kpi\sqrt{3}}{12} $ and $y_{2}=-\sqrt{3}x-\frac{5\sqrt{3}pi+6+12kpi\sqrt{3}}{12};k=Z $
How could I possibly get that ?!