Let $ M$ be a permutation $n \times n $ matrix and $[\lambda_1,\lambda_2, \ldots,\lambda_n]$ be the cycle type of the corresponding permutation, i.e. $ \lambda_i$ is the number of cycles of the lenght $i$.
How to prove that $$ \det(I \pm M \cdot z)=\prod_i (1 \pm z^i)^{\lambda_i}? $$ Or give me a link to a proof. Thanks.
Edit.
$z$ is formal variable.