How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$
I think this post can help me, but I'm not sure.
How can I prove that $$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\frac{11}{4}\zeta(3)+\zeta(2)+4\log(2)-4$$
I think this post can help me, but I'm not sure.
UPDATED: In this previous answer I proved that (if $\,\operatorname{Li}$ is the polylogarithm) : $$S(x):=\sum_{n=1}^\infty \frac{H_n}{n^2}\, x^n=\zeta(3)+\frac{\ln(1-x)^2\ln(x)}{2}+\ln(1-x)\operatorname{Li}_2(1-x)+\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)$$
Taking the limit as $x\to 1$ and $x\to -1$ we get : $$S(1)=\sum_{n=1}^\infty \frac{H_n}{n^2}=2\,\zeta(3),\quad S(-1)=\sum_{n=1}^\infty \frac{(-1)^n\;H_n}{n^2}=-\frac 58\zeta(3)$$
To obtain the limit for $S(1)$ use $\,\operatorname{Li}_n(\epsilon)\sim\epsilon\,$ as $|\epsilon|\to 0\,$ and $\,\operatorname{Li}_n(1)=\zeta(n)\,$.
For $S(-1)$ the method is rather long $(*)$ so let's come back to the integral expression from my previous answer applied to $x=-1$ (using $\displaystyle\operatorname{Li}_3(-1)=-\frac34\zeta(3)$ from $(*)$) : \begin{align} \sum_{n=1}^\infty \frac{H_n}{n^2}(-1)^n&=\int_0^{-1} \frac {\ln(1-x)^2}{2\,x}dx+\operatorname{Li}_3(-1)\\ &=\int_0^1 \frac {\ln(1+x)^2}{2\,x}dx-\frac 34\zeta(3)\\ \end{align}
Integrals like $\;\displaystyle a_k:=\int_0^1 \frac {\ln(1+x)^k}xdx\,$ were studied by Nielsen and Ramanujan who found that $\displaystyle a_1=\frac{\zeta(2)}2,\;a_2=\frac{\zeta(3)}4$ so that $\;\displaystyle S(-1)=\frac 12\frac{\zeta(3)}4-\frac{\zeta(3)}4=-\frac 58\zeta(3)$
We conclude that : $$S(1)+S(-1)=2\sum_{m=1}^\infty \frac{H_{2m}}{(2m)^2}=2\,\zeta(3)-\frac 58\zeta(3)=\frac {11}8\zeta(3)$$ and \begin{align} \sum_{n=1}^\infty \frac{H_{2n+1}}{n^2}&=\sum_{n=1}^\infty \frac{H_{2n}+\frac 1{2n+1}}{n^2}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2(2n+1)}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2}-\frac 4{2n}+\frac 4{2n+1}\\ &=\frac {11}4\zeta(3)+\sum_{n=1}^\infty \frac 1{n^2}+4\sum_{n=2}^\infty\frac {(-1)^{n-1}}{n}\\ &=\frac {11}4\zeta(3)+\zeta(2)+4(\ln(1+1)-1)\\ \end{align}
Concerning the series $\displaystyle \sum_{n=1}^\infty\frac{H_{2n+k}}{n^2}\;$ we simply add individual terms (as $+\frac 1{2n+1}$ previousy) and the same method still works : expand the remaining terms in partial fractions and evaluate the series.
For $k=5$ (using computer algebra of course) I got the previously evaluated $\; \displaystyle\frac {11}4\zeta(3)+$
$$\sum_{n=1}^\infty\frac 1{n^2}\left(\frac 1{2n+1}+\frac 1{2n+2}+\frac 1{2n+3}+\frac 1{2n+4}+\frac 1{2n+5}\right)=\\\sum_{n=1}^\infty\frac{137}{60n^2}-\frac{5269}{1800\,n} + \frac 1{2(n + 1)} + \frac 1{8(n + 2)} + \frac 4{2n + 1} + \frac 4{9( 2n + 3)} + \frac 4{25(2n + 5)}=\\ \frac{1036}{225}\ln(2) + \frac{137}{60}\zeta(2) - \frac{298373}{54000} $$
For $k=4$ the additional terms are $\displaystyle +\frac{40}9\ln(2) + \frac{25}{12}\zeta(2) - \frac{2281}{432}$ that you may compare with your result.
All results obtained for $k>0$ could be written as $\; \displaystyle R(k)=\frac{11}4\zeta(3)+p_k\,\zeta(2)+q_k\,\ln(2)+r_k\;$ for every $k>0$ with $p_k,q_k,r_k\in\mathbb{Q}\,$.
$(*)$ Alternative method to evaluate $S(-1)$ (complicated, left for the record only) :
$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \color{#f00}{\sum_{n = 1}^{\infty}{H_{2n + 1} \over n^{2}}} & = 4\sum_{n = 1}^{\infty}{H_{2n + 1} \over \pars{2n}^{2}} = 4\sum_{n = 1}^{\infty}{H_{n + 1} \over n^{2}}\, {1 + \pars{-1}^{n} \over 2} = 2\sum_{n = 2}^{\infty}{H_{n} \over \pars{n - 1}^{2}}\, \bracks{1 - \pars{-1}^{n}}\tag{1} \end{align}
Using the following nice rule: $$\sum_{n=1}^\infty a_{2n}=\sum_{n=1}^\infty a_{n}\left(\frac{1+(-1)^n}{2}\right)$$
We get \begin{align} S&=\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=4\sum_{n=1}^\infty\frac{H_{2n+1}}{{(2n)}^2}=4\left(\frac12\sum_{n=1}^\infty\frac{H_{n+1}}{n^2}+\frac12\sum_{n=1}^\infty(-1)^n\frac{H_{n+1}}{n^2}\right)\\ &=2\sum_{n=1}^\infty\frac{H_n}{n^2}+2\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^2}+2\sum_{n=1}^\infty\frac{1}{n^2(n+1)}+2\sum_{n=1}^\infty\frac{(-1)^n}{n^2(n+1)}\\ &=2\left(2\zeta(3)\right)+2\left(-\frac58\zeta(3)\right)+2\left(\zeta(2)-1\right)+2\left(2\ln2-\frac12\zeta(2)-1\right)\\ &=\frac{11}4\zeta(3)+\zeta(2)+4\ln2-4 \end{align}
Note that $\sum_{n=1}^\infty(-1)^n\frac{H_n}{n^2}$ was obtained from using the generating function where we set $x=-1$ :
$$\sum_{n=1}^\infty x^n\frac{H_n}{n^2}=\operatorname{Li}_3(x)-\operatorname{Li}_3(1-x)+\ln(1-x)\operatorname{Li}_2(1-x)+\frac12\ln x\ln^2(1-x)+\zeta(3)$$
Different approach:
$$\sum_{n=1}^\infty\frac{H_{2n+1}}{n^2}=\sum_{n=1}^\infty\frac{H_{2n}+\frac{1}{2n+1}}{n^2}$$ $$=\sum_{n=1}^\infty\frac{H_{2n}}{n^2}+\sum_{n=1}^\infty\frac{1}{n^2(2n+1)}$$
where $$\sum_{n=1}^\infty\frac{H_{2n}}{n^2}=4\sum_{n=1}^\infty\frac{H_{2n}}{(2n)^2}$$ $$=4\sum_{n=1}^\infty\frac{1}{2n}\left(-\int_0^1x^{2n-1}\ln(1-x)dx\right)$$
$$=-2\int_0^1\frac{\ln(1-x)}{x}\sum_{n=1}^\infty\frac{x^{2n}}{n}$$
$$=2\int_0^1\frac{\ln(1-x)\ln(1-x^2)}{x}dx$$
$$=2\int_0^1\frac{\ln^2(1-x)}{x}dx+2\int_0^1\frac{\ln(1-x)\ln(1+x)}{x}dx$$
$$=2(2\zeta(3))+2(-\frac58\zeta(3))=\frac{11}{4}\zeta(3)$$
and
$$\sum_{n=1}^\infty\frac{1}{n^2(2n+1)}=\sum_{n=1}^\infty\frac{1}{n^2}\int_0^1 x^{2n}dx$$ $$=\int_0^1\sum_{n=1}^\infty \frac{x^{2n}}{n^2}=\int_0^1\text{Li}_2(x^2)dx$$
$$=x\text{Li}_2(x^2)|_0^1+2\int_0^1\ln(1-x^2)dx$$
$$=\zeta(2)+2(x-1)\ln(1-x^2)|_0^1-4\int_0^1\frac{x}{1+x}dx$$
$$=\zeta(2)-4(1-\ln(2))$$