prove that the sequence converges $$a_n = \sum_{k=1}^n \frac1k \ -\ \int_1^n\frac{dx}x$$
Attempt:
I dont even know where to start here. the integral gives you -ln(n)
prove that the sequence converges $$a_n = \sum_{k=1}^n \frac1k \ -\ \int_1^n\frac{dx}x$$
Attempt:
I dont even know where to start here. the integral gives you -ln(n)
$$a_{n+1} - a_n = \sum_{k=1}^{n+1}{1\over k} - \sum_{k=1}^{n}{1\over k} - \int_n^{n+1} {dt\over t} = {1\over n+1} - \int_n^{n+1}{dt\over t} = \int_n^{n+1}\left({1\over n+1} - {1\over t}\right) dt < 0$$ The sequence decreases, and it is clearly bounded below by 0.
$$\frac{1}{\lfloor{x}\rfloor}=\frac{1}{x}+\frac{ \{ x \}}{x\lfloor{x}\rfloor}$$
$$\ln(n)+\int_{1}^n\frac{ \{ x \}}{x\lfloor{x}\rfloor}dx=\int_{1}^n\frac{1}{\lfloor{x}\rfloor} dx=\sum_{k=1}^{n-1}\int_{k}^{k+1}\frac{1}{\lfloor{x}\rfloor} dx=\sum_{k=1}^{n-1}\frac{1}{k}$$
$$a_n=\frac{1}{n}+\int_{1}^n\frac{ \{ x \}}{x\lfloor{x}\rfloor}dx=O(1)$$