The definition for the derivative that I have is:
Suppose $a\in\mathbb{R}$ and $f$ is a real valued function defined on an open interval containing $a$ (so $\exists\;\delta>0$ such that $(a-\delta,a+\delta)\subset\;dom\,(f)$ Then, $f$ is differentiable at $a$ if $$\lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}$$ exists and is an element of $\mathbb{R}$ (not $\infty$). If $f$ is differentiable at $a$, then we define $$f'(a)=\lim_{x\rightarrow a}\frac{f(x)-f(a)}{x-a}$$
For $f'(a)$ to be defined on $(a-\delta,a+\delta)\setminus{\{a\}}$:
-$f$ needs to be defined on $(a-\delta,a+\delta)\setminus{\{a\}}$
-$f$ needs to be defined at $(a-\delta,a+\delta)$
-$\frac{f(x)-f(a)}{x-a}$ is not defined at $x=a$
Considering this, what happens at $f'(a)$? Is it undefined? Edit: $\delta>0$ by the way.