Bernstein polynomials are defined like this $B_i^n={{n}\choose{i}}x^i(1-x)^{n-i}$.I need to prove that $r$'th derivative of it is equal to:
$(B_i^n)^{(r)}=\dfrac{n!}{(n-r)!}\sum\limits_{k=0}^{r}(-1)^k{{r}\choose{k}}B_{i-r+k}^{n-r}=\dfrac{n!}{(n-r)!}\sum\limits_{k=0}^{r}(-1)^k{{r}\choose{k}}{{n-r}\choose{i-r+k}}x^{i-r+k}(1-x)^{n-i-k}$.
Here's my partial solution end eventual getting stuck:
$(B_i^n)^{(r)}=({{n}\choose{i}}x^i(1-x)^{n-i})^{(r)} = {{n}\choose{i}}(x^i(1-x)^{n-i})^{(r)} \stackrel{Leibniz}{=} {{n}\choose{i}}\sum\limits_{k=0}^{r}{{r}\choose{k}}(x^i)^{(k)}((1-x)^{n-i})^{(r-k)}={{n}\choose{i}}\sum\limits_{k=0}^{r}{{r}\choose{k}}\dfrac{i!}{(i-k)!}x^{i-k}\dfrac{(n-i)!}{(n-i-r+k)!}(1-x)^{n-i-r+k}(-1)^k $
What am I doing wrong?