0

How to prove in any triangle that the area $X$ is given by:

$$X=\frac{1}{4}(a+b+c)^2\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}$$

John
  • 26,319
Ewin
  • 1,764
  • There is a hint for the product of the $\tan '$s:http://math.stackexchange.com/questions/477364/prove-that-tan-a-tan-b-tan-c-tan-a-tan-b-tan-c-abc-180-circ – K. Rmth Dec 13 '13 at 21:35
  • It isn't a hint ... It's better -> $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ – Ewin Dec 13 '13 at 21:42
  • Is this better?: http://en.wikipedia.org/wiki/Heron%27s_formula. Look at the "Proof using the Law of cotangents and the triple cotangent identity" paragraph. – K. Rmth Dec 13 '13 at 21:48
  • Yes, it's a hint now -.- – Ewin Dec 13 '13 at 21:53

3 Answers3

1

assume that c is the longest side and that d is perpendicular to c forming 2 right triangles. The angle between a and d should be called D. The line along c from a to d is c'.

$$Area=\frac 14(a+b+c)^2\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}$$ $$Area=\frac 14(a+c'+d)^2\tan\frac{D}{2}\tan\frac{B}{2}\tan45+\frac 14(b+d+c-c')^2\tan\frac{A}{2}\tan\frac{C-D}{2}\tan45$$ $$\tan 45=1$$ $$d^2=a^2-c'^2=b^2-(c-c')^2$$ IFF we can show the following that works, then the full one should too! $$\frac 14(a+c'+d)^2\tan\frac{D}{2}\tan\frac{B}{2}=\frac 12c'd$$ $$B=90-D$$ $$\tan \frac B2 = \frac{\sin B}{1+\cos B}$$ $$\tan \frac D2 = \frac{\sin D}{1+\cos D}$$ $$\sin B = \cos D = \frac da$$ $$\sin D = \cos B = \frac {c'}a$$ $$\tan\frac{D}{2}\tan\frac{B}{2} = \frac{c'd}{a^2+ac'+ad+c'd}$$ $$\frac 14(a+c'+d)^2\frac{c'd}{a^2+ac'+ad+c'd}=\frac 12c'd$$ $$(a+c'+d)^2=2(a^2+ac'+ad+c'd)$$ $$a^2+c'^2+d^2+2ac'+2ad+2c'd=2a^2+2ac'+2ad+2c'd$$ $$a^2+c'^2+d^2=2a^2$$ $$c'^2+d^2=a^2$$ which is true.... if we repeat for the other right triangle this works.... Doing it from the Heron is easier but only, I guess, if you know the Heron and can prove it.This uses http://en.wikipedia.org/wiki/Tangent_half-angle_formula so .... yeah....

kaine
  • 1,672
  • Do you know about where can I find the demonstration of this formula ? – Ewin Dec 13 '13 at 22:30
  • I guess http://math.ucsd.edu/~wgarner/math4c/textbook/chapter6/doublehalfangles.htm but I used it because it is the only half angle formula I know off the top of my head. – kaine Dec 13 '13 at 22:32
0

Use the popular identity: $$\tan\left(\frac A2\right)\tan\left(\frac B2\right)\tan\left(\frac C2\right) = \frac rp$$ $$RHS = \frac{1}{4}\times 4p^2*\frac rp = pr = A = LHS$$

K. Rmth
  • 1,749
DeepSea
  • 77,651
-1

From this, $$\tan\frac A2=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\text{ where } s=\frac{a+b+c}2$$

This can be easily derived using Tangent half-angle formula and the Law of cosines

Now we know Heron's formula