After proving a few lemmas, we prove the assertions stated in KCd's answer.
We fix a $\mathbb{Q}$-vector space $V$ of finite dimension $n$.
Notation
Let $x_1,\cdots,x_m$ be a finite sequence of elements of $V$.
We denote by $[x_1,\cdots,x_m]$ the $\mathbb{Z}$-submodule of $V$ generated by $x_1,\cdots,x_m$.
Lemma 1
Let $L$ be a finite free $\mathbb{Z}$-module of rank $n$.
Let $M$ be a $\mathbb{Z}$-submodule of $L$.
Suppose there exists an integer $d \gt 0$ such that $dL \subset M$,
Then $M$ is a finite free $\mathbb{Z}$-module of rank $n$.
Proof:
We use induction on $n$.
If $n = 1$, the assertion is clear.
Suppose $n \gt 1$.
Let $\theta_1,\cdots,\theta_n$ be a free $\mathbb{Z}$-basis of $L$.
Let $p_n\colon L \rightarrow \mathbb{Z}$ be the map defined by $p_n(x) = x_n$, where $x = x_1\theta_1 + \cdots + x_n\theta_n$.
Clearly $p_n$ is a $\mathbb{Z}$-homomorphism.
If $p_n(M) = 0$, then $M \subset [\theta_1,\cdots,\theta_{n-1}]$.
Since $d\theta_n \in M, d\theta_n \in [\theta_1,\cdots,\theta_{n-1}]$.
This is a contradiction.
Hence $p_n(M) \ne 0$.
Then there exists an integer $a_n \gt 0$ such that $p_n(M) = a_n\mathbb{Z}$.
Hence there exists $\omega_n \in M$ such that $p_n(\omega_n) = a_n$.
Then $M = M \cap [\theta_1,\cdots,\theta_{n-1}] + [\omega_n]$.
This is a direct sum.
Since $d[\theta_1,\cdots,\theta_{n-1}] \subset M \cap [\theta_1,\cdots,\theta_{n-1}]$,
by the induction hypothesis, we are done.
QED
Lemma 2
Let $L$ be a lattice of $V$.
Let $M$ be a finitely generated $\mathbb{Z}$-submodule of $V$.
Then there exists an integer $d \gt 0$ such that $dM \subset L$.
Proof:
Let $\theta_1,\cdots,\theta_n$ be a $\mathbb{Z}$-basis of $L$.
Suppose $M = [\alpha_1,\cdots,\alpha_m]$.
Then $\alpha_i = \sum_j a_{ij} \theta_j$ for $i = 1,\cdots,m$, where $a_{ij} \in \mathbb{Q}$.
There exists an integer $d \gt 0$ such that $da_{ij} \in \mathbb{Z}$ for all $i, j$.
Then $d\alpha_i \in L$ for all $i$.
Hence $dM \subset L$.
QED
Corollary
Let $L, M$ be lattices of $V$.
Then $L \cap M$ is a lattice of $V$.
Proof:
By the lemma, there exists an integer $d \gt 0$ such that $dL \subset M$.
Since $dL \subset L \cap M \subset L$, the assertion follows from Lemma 1.
QED
Lemma 3
Let $L$ be a subset of $V$.
The following assertions are equivalent.
$L$ is a lattice of $V$.
$L$ is a finitely generated $\mathbb{Z}$-submodule of $V$ and it contains a $\mathbb{Q}$-basis of $V$.
Proof:
$1. \Rightarrow 2.$
Clear.
$2. \Rightarrow 1.$
Let $\theta_1,\cdots,\theta_n$ be a $\mathbb{Q}$-basis of $V$.
Let $M = [\theta_1,\cdots,\theta_n]$.
By Lemma 2, there exist integers $c \gt 0, d \gt 0$ such that $cM \subset L, dL \subset M$.
Then $dcM \subset dL \subset M$.
By Lemma 1, $dL$ is a lattice of $V$.
Hence $L$ is also a lattice of $V$.
QED
Corollary
Let $L, M$ be lattices of $V$.
Then $L + M$ is a lattice of $V$.
Proposition 1
Let $L$ and $L'$ be lattices of $V$.
By the corollarys of Lemma 2 and Lemma 3, $L\cap L'$ and $L + L'$ are lattices of $V$.
Let $M$ be a lattice of $V$ containing $L$ and $L'$.
Let $N$ be a lattice of $V$ contained in $L$ and $L'$.
Then $$\frac{[M:L']}{[M:L]} = \frac{[L+L':L']}{[L+L':L]} = \frac{[L:L\cap L']}{[L':L\cap L']} = \frac{[L:N]}{[L':N]}$$.
Proof:
Note that $M \supset L + L'$.
Hence
$$[M:L'] = [M:L + L'][L+L':L']$$
$$[M:L] = [M:L + L'][L+L':L]$$
Hence $$\frac{[M:L']}{[M:L]} = \frac{[L+L':L']}{[L+L':L]}$$
Note that $L \cap L' \supset N$.
Hence
$$[L:N] = [L:L \cap L'][L\cap L':N]$$
$$[L':N] = [L':L \cap L'][L\cap L':N]$$
Hence $$\frac{[L:N]}{[L':N]} = \frac{[L:L\cap L']}{[L':L\cap L']}$$.
Note that $[L:L\cap L'] = [L+L':L']$ and $[L':L\cap L'] = [L+L':L]$.
Hence $$\frac{[L+L':L']}{[L+L':L]} = \frac{[L:L\cap L']}{[L':L\cap L']}$$
QED
Definition 1
Let $L$ and $L'$ be lattices of $V$.
Let $M$ be a lattice of $V$ containing $L$ and $L'$.
Let $N$ be a lattice of $V$ contained in $L$ and $L'$.
We define $$[L:L'] = \frac{[M:L']}{[M:L]}$$ or $$[L:L'] = \frac{[L:N]}{[L':N]}$$
By Proposition 1, this is well-defined.
Proposition 2
Let $L$ and $L'$ be lattices of $V$ such that $L \supset L'$.
Then $[L:L'] = |L/L'|$.
Proof:
Since $L+L' = L$, $$[L:L'] = \frac{[L:L']}{[L:L]} = |L/L'|$$
QED
Proposition 3
Let $L, L', L''$ be lattices of $V$.
Then $[L:L''] = [L:L'][L':L'']$.
Proof:
Let $M = L+L'+L''$.
Then
$$[L:L''] = \frac{[M:L'']}{[M:L]}$$
$$[L:L'] = \frac{[M:L']}{[M:L]}$$
$$[L':L''] = \frac{[M:L'']}{[M:L']}$$
Hence $[L:L''] = [L:L'][L':L'']$.
QED
Lemma 4
Let $L$ and $L'$ be lattices of $V$ such that $L \supset L'$.
Let $\psi \colon V \rightarrow V$ be $\mathbb Q$-linear automorphism.
Then $[L:L'] = [\psi(L):\psi(L')]$.
Proof:
$\psi$ induces a surjective $\mathbb{Z}$-linear map $\phi\colon L \rightarrow \psi(L)/\psi(L')$.
The kernel of $\phi$ is $L'$.
Hence $\phi$ induces an $\mathbb{Z}$-linear isomorphism $L/L' \cong \phi(L)/\phi(L')$.
QED
Proposition 4
For any lattices $L$ and $L'$ in $V$, and any $\mathbb Q$-linear automorphism $\psi \colon V \rightarrow V$, $[L:L'] = [\psi(L):\psi(L')]$.
Proof:
Let $M$ be a lattice of $V$ containing $L$ and $L'$.
Then $$[L:L'] = \frac{[M:L']}{[M:L]}$$
By Lemma 4, $$\frac{[M:L']}{[M:L]} = \frac{[\psi(M):\psi(L')]}{[\psi(M):\psi(L)]} = [\psi(L):\psi(L')]$$
QED
Lemma 5
Let $L$ be a lattice of $V$.
Let $\psi \colon V \rightarrow V$ be a $\mathbb Q$-linear automorphism.
Suppose $\psi(L) \subset L$.
Then $[L: \psi(L)] = |\det \psi|$.
Proof:
Let $L' = \psi(L)$.
Let $\theta_1,\cdots,\theta_n$ be a free $\mathbb{Z}$-basis of $L$.
Suppose $\psi(\theta_i) = \sum_j a_{ij}\theta_j$ for $i = 1, \cdots, n$,
where $a_{ij} \in \mathbb{Q}$.
Then $\det \psi = \det (a_{ij})$.
On the other hand, by Lemma 2, there exists an integer $d \gt 0$ such that $dL \subset L'$.
Hence we can apply Lemma 1. By its proof, there exists a free $\mathbb{Z}$-basis $\omega_1,\cdots,\omega_n$ of $L'$ of the form $\omega_i = b_{i1}\theta_1 + \cdots + b_{ii}\theta_i$ for $i = 1, \cdots, n$, where $b_{ii} \gt 0$.
Then $[L: L'] = b_{11}\cdots b_{nn} = \det (b_{ij})$(see the proof of Lemma 3 of my answer to this question).
Since $|\det (b_{ij})| = |\det \psi|$(see the proof of the proposition of my answer to this question), we are done.
QED
Proposition 5
For any lattice $L$ in $V$ and $\mathbb Q$-linear automorphism $\psi \colon V \rightarrow V$, $[L:\psi(L)] = |\det \psi|$.
Proof:
By Lemma 2, there exists an integer $d \gt 0$ such that $d\psi(L) \subset L$.
By Proposition 3 and Proposition 4, $[L:d\psi(L)] = [L:dL][dL:d\psi(L)] = d^n[dL:d\psi(L)] = d^n[L:\psi(L)]$.
Since $\det d\psi = d^n \det \psi$,
replacing $\psi$ by $d\psi(L)$, we may suppose that $\psi(L) \subset L$.
Then the assertion follows from Lemma 5.
QED
Proposition 6
For any lattices $L$ and $L'$ in $V$, there is a $\mathbb Q$-linear automorphism $\psi \colon V \rightarrow V$ such that $\psi(L) = L'$.
Proof:
Let $\theta_1,\cdots,\theta_n$ be a free $\mathbb{Z}$-basis of $L$.
Let $\theta'_1,\cdots,\theta'_n$ be a free $\mathbb{Z}$-basis of $L'$.
There is a unique $\mathbb Q$-linear automorphism $\psi \colon V \rightarrow V$ such that
$\psi(\theta_i) = \theta'_i$ for $i = 1, \cdots, n$.
Clearly $\psi(L) = L'$.
QED
Now we prove the assertions of the question.
Let $K$ be an algebraic number field of degree $n$.
Let $R$ be an order of $K$.
Lemma 6
Let $I$ be a fractional ideal of an order $R$.
Then $I$ is a lattice of $K$.
Proof:
We may suppose that $I \subset R$.
Since $R$ is a latice of $K$, $I$ is a finitely generated $\mathbb{Z}$-submodule of $R$.
Since $I \ne 0$, there exists a non-zero element $\alpha \in I$.
Then $\alpha R \subset I$.
Since $\alpha R$ is a lattice of $K$, $I$ is a lattice by Lemma 3.
QED
Definition 2
Let $I$ be a fractional ideal of an order $R$.
We define $N(I) = [R:I]$.
The right hand side is defined by Definition 1.
Proposition 7
Let $I$ be a fractional ideal of an order $R$.
Let $\gamma$ be non-zero element of $K$.
Then $N(\gamma I) = |N(\gamma)|N(I)$.
Proof:
By Proposition 3, $N(\gamma I) = [R:\gamma I] = [R:\gamma R][\gamma R: \gamma I]$.
Let $\psi\colon K \rightarrow K$ be the map defined by $\psi(x) = \gamma x$.
$\psi$ is a $\mathbb{Q}$-linear automorphism of $K$ and $\det \psi = N(\gamma)$.
By Propositio 5, $[R:\gamma R] = |N(\gamma)|$.
By Propositio 4, $[\gamma R: \gamma I] = [R:I] = N(I)$.
Hence $N(\gamma I) = |N(\gamma)|N(I)$.
QED
Proposition 8
Let $I$ be a fractional ideal of an order $R$.
Let $\alpha_1, \cdots, \alpha_n$ be $\mathbb{Z}$-basis of $I$.
Let $\theta_1, \cdots, \theta_n$ be $\mathbb{Z}$-basis of $R$.
Suppose $\alpha_i = \sum_j a_{ij} \theta_j$ for $i = 1,\cdots,n$.
Then $N(I) = |$det $(a_{ij})|$.
Proof:
There exists a unique $\mathbb{Q}$-linear automorphism $\psi\colon K \rightarrow K$ such that
$\psi(\theta_i) = \alpha_i$ for $i = 1,\cdots,n$.
Since $I = \psi(R)$, the assertion follows from Proposition 5.
QED
Proposition 9
Let $I, J$ be fractional ideals of $R$ such that $J \subset I$.
Then $|I/J| = N(J)/N(I)$.
Proof:
By Proposition 3, $[R:J] = [R:I][I:J]$.
Hence $|I/J| = N(J)/N(I)$.
QED