$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{0}^{\infty}{x^{a} - x^{b} \over \pars{1 + x^{a}}\pars{1 + x^{b}}}\,\dd x
=\int_{0}^{\infty}{\dd x \over 1 + x^{b}} - \int_{0}^{\infty}{\dd x \over 1 + x^{a}}}$
Let's consider $\ds{\int_{0}^{\infty}{\dd x \over 1 + x^{\mu}}}$ with
$\Re\pars{\mu} > 1$. With the change of variables $\ds{t \equiv {1 \over 1 + x^{\mu}}}$
$\iff$ $\ds{x = \pars{1 - t \over t}^{1/\mu}}$
\begin{align}
\color{#00f}{\large\int_{0}^{\infty}{\dd x \over 1 + x^{\mu}}}&=\int_{1}^{0}
t\,{1 \over \mu}\,\pars{1 - t \over t}^{1/\mu - 1}\,\pars{-\,{\dd t \over t^{2}}}
={1 \over \mu}\int_{0}^{1}t^{-1/\mu}\pars{1 - t}^{1/\mu - 1}\,\dd t
\\[3mm]&={1 \over \mu}\,{\rm B}\pars{-\,{1 \over \mu} + 1,{1 \over \mu}}
={1 \over \mu}\,
{\Gamma\pars{-1/\mu + 1}\Gamma\pars{1/\mu}
\over \Gamma\pars{\bracks{-1/\mu + 1} + 1/\mu}}
={1 \over \mu}\,{\pi \over \sin\pars{\pi\,\bracks{1/\mu}}}
\\[3mm]&=\color{#00f}{\large{\pi \over \mu}\,\csc\pars{\pi \over \mu}}
\end{align}
Then,
$$\!\!\!\color{#00f}{\large%
\int_{0}^{\infty}\!\!\!{x^{a} - x^{b} \over \pars{1 + x^{a}}\pars{1 + x^{b}}}\,\dd x
=
{\pi \over b}\,\csc\pars{\pi \over b} - {\pi \over a}\,\csc\pars{\pi \over a}}
\,,\qquad\Re\pars{a} > 1\,,\ \Re\pars{b} > 1
$$