$T^{k+1} = 0$, where $k$ is a positive integer. Prove that $I + T + T^2 + \dots+ T^k = (I - T)^{-1}.$
My proof: Let $T$ be a $m \times n$ square matrix with the same number of $m$ rows and $n$ columns. $K$ must be greater than zero.
$$I = I^2 * I^{-1}$$ $$T = T^2 * T^{-1}$$ $$T^{k-1} = T^k * T^{-1}$$ $$I-T^{-1} = \frac{1}{I-T}$$
$$I + T + T^2 + \dots + T^k = (I-T)^{-1}$$
$$I + T + T^k + T^2 + \dots + T^{k-1} = (I-T)^{-1}$$
$$I + T + T^k + T^2 + \dots + T^kT^{-1} = (I-T)^{-1}$$
I'm a bit stuck. It seems like one of those $P*P^{-1}$ problems.
Is what I am doing overkill to the proof?
I need directions.