We can compute exact formulas for your recurrence and not just at powers of two. Suppose we first solve the recurrence
$$T(n) = 4 T(\lfloor n/2\rfloor) + n^2 (1+\lfloor \log_2 n\rfloor)$$
with $T(0)=0.$
Then let $$n= \sum_{k=0}^{\lfloor \log_2 n\rfloor} d_k 2^k$$ be the binary representation of $n$ and unroll the recursion to get the following exact formula for $T(n):$
$$T(n) = \sum_{j=0}^{\lfloor \log_2 n\rfloor} 4^j
(1+\lfloor \log_2 n\rfloor -j)
\left(\sum_{k=j}^{\lfloor \log_2 n\rfloor} d_k 2^{k-j} \right)^2
\\= \sum_{j=0}^{\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor -j)
\left(\sum_{k=j}^{\lfloor \log_2 n\rfloor} d_k 2^k \right)^2.$$
Now to get an upper bound on this consider a string of one digits, which gives
$$T(n)\le \sum_{j=0}^{\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor -j)
\left(\sum_{k=j}^{\lfloor \log_2 n\rfloor} 2^k \right)^2
= \sum_{j=0}^{\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor -j) (2^{1+\lfloor \log_2 n\rfloor}-2^j)^2
\\ = \sum_{j=1}^{1+\lfloor \log_2 n\rfloor}
j (2^{1+\lfloor \log_2 n\rfloor}-2^{1+\lfloor \log_2 n\rfloor-j})^2
=2^{2(1+\lfloor \log_2 n\rfloor)}
\sum_{j=1}^{1+\lfloor \log_2 n\rfloor} j \times (1-2^{-j})^2.$$
The dominant term in the sum is $j$ which contributes $\sum_{j=1}^{1+\lfloor \log_2 n\rfloor} j$ to give
$$\frac{1}{2} 2^{2(1+\lfloor \log_2 n\rfloor)}
(1+\lfloor \log_2 n\rfloor)(2+\lfloor \log_2 n\rfloor).$$
For a lower bound consider a one followed by zeros to obtain
$$T(n)\ge \sum_{j=0}^{\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor -j)
2^{2\lfloor \log_2 n\rfloor}
= 2^{2\lfloor \log_2 n\rfloor}\sum_{j=1}^{1+\lfloor \log_2 n\rfloor} j.$$
Simplifying the sum term we get
$$\frac{1}{2} 2^{2\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor)(2+\lfloor \log_2 n\rfloor)$$
which is exact this time compared to the upper bound which was asymptotic.
The conclusion is that by taking the two bounds together we obtain
$$T(n)\in\Theta\left(2^{2\lfloor \log_2 n\rfloor}
(1+\lfloor \log_2 n\rfloor)(2+\lfloor \log_2 n\rfloor)\right)
= \Theta\left(n^2 \times \log^2 n\right).$$
A variety of Master Theorem computations can be found at this MSE link. In fact there is another very similar solution to this problem at this MSE link II.