1) If $x=0$ it does converges. Otherwise, consider two sequences
$$
t_n'=\frac{\pi n}{x}\qquad t_n''=\frac{\pi+2\pi n}{2x}
$$
tending to infinity. Clearly,
$$
\lim\limits_{n\to\infty}f_{t_n'}(x)=0\qquad\lim\limits_{n\to\infty}f_{t_n''}(x)=1
$$
so $\lim\limits_{t\to\infty} f_t(x)$ does not exist by Heine's definition of continuity. Therefore $(f_t(x))_{t>0}$ converges only for $x=0$.
2) Fix $n>3$ and $t>2n$. Let $k=\lceil \frac{t}{2\pi}\rceil$, then $\frac{k}{t}\leq\frac{1}{2\pi}+\frac{1}{t}\leq\frac{1}{\pi}$. Now, note that
$$
\begin{align}
\int_0^1|\sin tx|^tdx
&\leq\int_0^1|\sin tx|^{2n}dx\qquad\\
&=\frac{1}{t}\int_0^t\sin^{2n} sds \\
&\leq \frac{1}{t}\int_0^{2\pi k}\sin^{2n} sds \\
&= \frac{k}{t}\int_0^{2\pi}\sin^{2n} sds \\
&\leq \frac{1}{\pi}\frac{{2n \choose n}}{2^{2n}} \\
\end{align}
$$
For evaluation of the integral see this post. Since $t>2n$ we get that
$$
\lim\limits_{t\to\infty}\int_0^1|\sin tx|^tdx\leq \frac{1}{\pi 2^{2n}}{2n \choose n}
$$
Since $n>3$ is arbitrary, we conclude
$$
\lim\limits_{t\to\infty}\int_0^1|\sin tx|^tdx\leq\lim\limits_{n\to\infty}\frac{1}{\pi 2^{2n}}{2n \choose n}=0
$$
In evaluation of the last limit we used this asymptotics.
Thus we proved that $(f_t)_{t>0}$ $L_1$-converges to $0$. Hence it converges to $0$ in measure.