Let $f: (0, +\infty) \to\mathbb R$ be a differentiable function such that $f(xy)=f(x)f(y)$ for all $x,y \in (0, +\infty)$.
Show that if $f(1)=1$, then there exists a constant $\alpha$ such that $f(x)=x^\alpha$ for all $x \in (0, +\infty)$.
So far: $$f(x^\alpha)=f(\underbrace{x\cdot x\cdots x}_{\alpha\text{ times}})=\underbrace{f(x)\cdot f(x)\cdots f(x)}_{\alpha\text{ times}}=\alpha\cdot f(x)$$ Hence, $f(x^\alpha)=\alpha\cdot f(x)$.
From here I am not quite sure, but I believe I need to differentiate both sides, then move all terms to one side equaling zero and solve?