Suppose we an angle $\;\theta\;$ of the triangle $\;\Delta ABC\;$ with sides $\;a,b,c\;$ and respective opposite angles $\;\alpha,\beta,\gamma\;$ and inscribed in a circle of radius $\;r\;$ . The sinus law tells us that
$$\frac a{\sin\alpha}=\frac b{\sin\beta}=\frac c{\sin\gamma}=2r$$
If we now use the area formula
$$S(r,\alpha,\beta):=S_{\Delta ABC}=\frac12ab\sin\gamma=\frac12(2r\sin\alpha)(2r\sin\beta)\sin\gamma=$$
$$=2r^2\sin\alpha\sin\beta\sin(\alpha+\beta)$$
$$\begin{align*}\text{I}\;\;S'_r&=4r\sin\alpha\sin\beta\sin(\alpha+\beta)\stackrel ?=0\\
\text{II}\;\;S'_\alpha&=2r^2\sin\beta\underbrace{\left[\cos\alpha\sin(\alpha+\beta)+\sin\alpha\cos(\alpha+\beta)\right]}_{\sin(2\alpha+\beta)}\stackrel ?=0\\
\text{III}\;\;S'_\beta&=2r^2\sin\alpha\underbrace{\left[\cos\beta\sin(\alpha+\beta)+\sin\beta\cos(\alpha+\beta)\right]}_{\sin(\alpha+2\beta)}\stackrel ?=0\end{align*}$$
Since we can assume $\;r,\sin\alpha,\sin\beta\neq 0\;,\;\;0<\alpha\,,\,\beta <\pi\;$ (why?) , we get
$$\begin{align*}\text{II}\implies&\sin(2\alpha+\beta)=0\iff 2\alpha+\beta=\pi\\
\text{III}\implies&\sin(\alpha+2\beta)=0\iff\alpha+2\beta=\pi\end{align*}$$
Solving the above easy linear system we get
$$3\beta=\pi\implies \beta=\frac\pi3$$
and etc....